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Non-conglomerability for countably additive measures that are not -additive*  

Mark Schervish, Teddy Seidenfeld, and Joseph Kadane – CMU 
  

Abstract  

Let  be an uncountable cardinal. Using the theory of conditional probability 

associated with de Finetti (1974) and Dubins (1975), subject to several structural 

assumptions for creating sufficiently many measurable sets, and assuming that  is 

not a weakly inaccessible cardinal, we show that each probability that is not ‐

additive has conditional probabilities that fail to be conglomerable in a partition of 

cardinality no greater than . This generalizes a result of Schervish, Seidenfeld, 

and Kadane (1984), which established that each finite but not countably additive 

probability has conditional probabilities that fail to be conglomerable in some 

countable partition.  

Key Words: additive probability, non-conglomerability, conditional probability,  

regular conditional probability distribution, weakly inaccessible cardinal.  

  

1.   Introduction.  Consider a finitely, but not necessarily countably additive  

probability P() defined on a -field of sets B, with sure-event  .  That is,  

< , B, P> is a (finitely additive) measure space.   

Let B, C, D, E, F, G  B , with B   and  F  G  .   

Definition 1.  A finitely additive conditional probability function P( | B), satisfies the 

following three conditions:      

(i) 0  P(C  D | B) = P(C | B) + P(D | B), whenever C  D = ; 

(ii) P(B | B) = 1    

Moreover, following de Finetti (1974) and Dubins (1975), in order to regulate 

conditional probability given a non-empty event of unconditional or conditional 

probability 0, we require the following.  

(iii) P(E  F | G) = P(E | F  G)P(F | G).  

As is usual, we identify the unconditional probability function P() with P( | ) and  

refer to P() as a probability function.   Call event B P-null when P(B) = 0 
  

This account of conditional probability is not the usual theory from contemporary 

Mathematical Probability. It differs from the received theory of Kolmogorovian 

regular conditional distributions in four ways:  
  

1. The theory of regular conditional distributions requires that probabilities and 

conditional probabilities are countably additive.  The de Finetti/Dubins theory 

requires only that probability and conditional probability is finitely additive. 

In this paper, we bypass most of this difference by exploring de Finetti/Dubins 

conditional probabilities associated with countably additive unconditional 
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probabilities. Specifically, we do not require that conditional probabilities are 

countably additive.  
  

2. When B is both P-null and not empty, a regular conditional probability given B 

 is relative to a sub--field A   B, where B   A.   But in the de Finetti/Dubins 

 theory of conditional probability, P( | B), depends solely on the event B and 

 not on any sub--field that embeds it.  Example 3, which we present in Section 

 5, illustrates this difference. 

 

3. Some countably additive probabilities do not admit regular conditional 

distributions relative to a particular sub--field, even when both -fields are 

countably generated. (See Corollary 1 in Seidenfeld, Schervish, and Kadane 

[2001].) In contrast, Dubins (1975) establishes the existence of full 

conditional probability functions: where, given a set   of arbitrary cardinality, 

a conditional probability satisfying Definition 1 is defined with respect to each 

non-empty element of its powerset, i.e., where B is the powerset of  . 

Hereafter, we require that each probability function includes its conditional 

probabilities (in accord with Definition 1) given each non-empty event B B.  

However, because we investigate conditional probabilities for a countably 

additive unconditional probability, in light of Ulam’s Theorem [1930], we do 

not require that B  is the powerset of the state space  .   

 

4. Our focus in this paper is a fourth feature that distinguishes the  

 de Finetti/Dubins theory of conditional probability and the 

Kolmogorovian theory of regular conditional probability. This aspect of 

the difference involves conglomerability of conditional probability 

functions. 
 

 

Let I be an index set and let = {hi: iI} be a partition of the sure event where the 

conditional probabilities, P(E | hi) are well defined for each E B  and iI.  

Definition 2:  The conditional probabilities P(E | hi) are conglomerable in provided 

that, for each event E   B  and real constants k1 and k2, 

if k1 P(E | hi) k2 for each iI, then k1 P(E) k2. 

That is, conglomerability requires that the unconditional probability for event E,  

P(E) lies within the (closed) interval of conditional probability values, 

{P(E | hi)| iI }, with respect to elements h of a partition  . 
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Conglomerability is an intuitively plausible property that probabilities might be 

required to have.   Suppose that one thinks of the conditional probability P(E|hi) as 

representing one’s degree of belief in E if one learns that hi is true. Then P(E|hi)  k2 

for all i in I means that one believes that, no matter which hi one observes, one will 

have degree of belief in E at most k2.  Intuitively, one might think that this should 

imply  P(E)  k2 before learning which hi is true.  That is, if one knows for sure that 

one is going to believe that the probability of E is at most k2 after observing which hi is 

true, then one should be entitled to believe that the probability of E is at most k2 now. 

This paper shows that this intuition is only good when the degree of additivity of the 

probability matches (or exceeds) the cardinality of the partition. 

 

Schervish, Seidenfeld, and Kadane (1984) show that if P is merely finitely additive 

(i.e., if P is finitely but not countably additive) with conditional probabilities  that 

satisfy Definition 1, and P is defined on a field of sets, then P fails 

conglomerability in some countable partition.  That is, for each merely finitely 

additive probability P there is an event E, an > 0, and a countable partition of 

measurable events = {hn: n = 1, …}, where 

P(E) > P(E | hn) +  for each hn  . (*) 

 

The following example illustrates a failure of conglomerability for a merely finitely 

additive probability P in a countable partition = {hn: n {1, 2, …}}, where each 

element of the partition is not P-null, i.e., P(hn) > 0 for each n {1, 2, …}. Then, by 

both the theory of conditional probability according to Definition 1 and the theory of 

regular conditional distributions (ignoring the requirement that probability is 

countably additive), P(E | hn) = P(Ehn)/P(hn) is well defined. Thus, the failure of 

conglomerability in this example is due to the failure of countable additivity, rather 

than to a difference in how conditional probability is defined. 

 
Example 1 (Dubins, 1975): Let the sure event   = {(i, n): i {1, 2} and n {1, 2, …}} 

and B be the powerset of  . Let E = {{1, n}: n {1, 2, …}} and hn = {{1,n}, {2, n}}, 

and partition = {hn: n {1, 2, …}}. Partially define the finitely additive probability 

P by: (i) P({i, n}) = 1/2n+1 if i = 1, and P({i, n}) = 0 if i = 2, 

and (ii) P(E) = 0.5. 

So P is merely finitely additive over Ec and P( | Ec) is purely finitely additive. It 

follows easily that P(hn) = 1/2n+1 > 0 for each n {1, 2, …}. Thus, P is not 

conglomerable in as: P(Ec | hn) = P(Ec hn)/P(hn) = 0, for each n {1, 2, …}, 

whereas P(Ec) = 0. 5.Example 1 

 

Kadane, Schervish, and Seidenfeld [1996] discuss this example in connection with 
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the value of information. Also they show (1986, Appendix) that there exist countably 

additive probabilities defined on the continuum such that, if conditional 

probabilities are required to satisfy Definition 1 rather than being regular 

conditional distributions, then non-conglomerability results in at least one 

uncountable partition. Here we generalize that result to κ-non-additive probabilities 

that are countably additive. Throughout, we assume ZFC set theory. 

 

Let < , B, P> be a measure space, with P countably additive. That is, B is a -field of 

sets over  .  Set B is measurable means that B B.  That P is a countably additive 

probability is formulated with either of two equivalent, familiar definitions. That 

these are equivalent definitions is immediate from the requirement that B  is a  

field of sets.  (See, e.g., Billingsley, 1995, p. 25.) 

 

Definition 3a:  Let {Ai: i = 1, … } be a denumerable sequence of measurable, pairwise 

disjoint events, and let A be their union, which then is measurable as B is a -field.  

That is, Ai Aj = if i j, and A = i Ai. P is countably additive1 (in the first sense) 

provided that P(A) = iP(Ai) for each such sequence. 

 

Definition 3b:  Let {Bi: i = 1, … } be an increasing denumerable sequence of 

measurable events, with B their limit, which then is measurable.  That is, Bi Bj if i 

j, and B = i Bi. Then P is countably additive2 (in the second sense) provided that 

P(B) = limiP(Bi) for each such sequence.  That is, P is countably additive2 provided it 

is continuous over denumerable sequence of measurable events that approximate a 

measurable event from below. 

 

In this paper we examine non-conglomerability of a set of conditional probabilities 

{P(E | h)} that satisfy (the de Finetti/Dubins) Definition 1, where these conditional 

probabilities are associated with a countably additive unconditional probability, P, 

that belongs to a measure space < , B, P>.  How large do we require the field of 

sets B be in order to have available sufficiently many well defined conditional 

probabilities?  By an important result of Ulam (1930), unless the cardinality of   is 

at least as great as some inaccessible cardinal, B cannot be the powerset of  . (See, 

e.g., Jech (1978), chapter 27.) However, without loss of generality, we may assume 

that the measure space is P-complete and contains each point   . That is, if N B, 

P(N) = 0, and E N, then E B. See, e.g., Billingsley (1995, p. 44), Doob (1994, p.37), 

or Halmos (1950, p. 55).  

 

Our principal result here asserts that, subject to several structural assumptions to 

assure richness of B, presented in Section 3.1, the non-conglomerability of P occurs 
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in a partition by measurable events whose cardinality  is bounded above by the 

extent of non‐additivity of the countably additive probability P.   We postpone to the 

concluding Section 6 our discussion of the consistency of these structural 

assumptions.  
 

There are two, parallel definitions for generalizing from countable additivity (also 

denoted -additivity) to -additivity.  In the following, let  and be ordinals, and 

 and  be cardinals. 

Definition 4a:  Let {A: < } be a sequence of -many measurable, disjoint 

events, and let A be their union, which also is presumed measurable. That is, 

AA= if  with A =  < A.  

P is ‐additive1 if P(A) = < P(A) for each such ‐sequence. 

Note: The infinite sum of a sequence of non-negative terms is the supremum over all 

finite sums in the sequence.  When the sequence are probabilities for terms in a 

partition, at most countably many terms are positive. 

 

Definition 4b (Armstrong and Prikry, 1980): Let {B: < } be an increasing          

sequence of -many measurable events, where BBwhenever < with B = 

< B also measurable.   

P is -additive2 if P(B) = sup<P(B) for each such -sequence. 

That is, P is -additive2 provided that probability is continuous from below over -long 

sequences of measurable events that approach a measurable event from below. 

 

Next, we show that for a complete measure space, ‐additive1 is sufficient for 

additive2.    

Lemma 1a:  Let < , B, P> be a P-complete measure space with | | = . P is ‐additive1 

only if it is additive2. 

Proof  

Consider a collection of measurable sets, {B:  < } that are nested upwards, i.e., 

where BBwhenever  (and then P(B)  P(B)), and with measurable limit B. 

Definition 5:  Say that P increases at B if P(B)  > sup< P(B).   

   Otherwise, P is constant at B, i.e., P(B)  = sup< P(B).   

By finite additivity of P, P increases over the collection {B:  < }, denumerably (i.e. 

finitely or countably infinitely) many times.  At all other places within the collection 
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! 

{B:  < }, P is constant.   

 

Let {B: < } be an upward nested -length sequence of measurable events with 

measurable limit B = <B.   Consider the denumerable subsequence of {B:  < } 

where P increases.  Index this subsequence with the countable ordinal , so that P 

increases exactly at the sets {Bαδ
:   < }.  Then, as B is a -field, B* = < Bαδ

 also is 

measurable, and by countable additivity, P(B*) = sup<𝑃(Bαδ
).  

 

If the subsequence {Bαδ
:   < } is cofinal in the sequence {B:  <  }, we are done as 

then B* = B and P(B) = P(B*) = sup<P(Bαδ
) sup<P(Bα).  Otherwise, let be 

the least ordinal that bounds this countable subsequence of ordinals.  That is, then B* 

 B and   is least; so, c = P(B) = P(B*).  Then, for each ordinal , ≤ < , also P(B) 

= c.  That is, P is constant on this measurable tail, {B: ≤ < }, of the sequence {B: 

< }.  We use the assumption that P is -additive1 to argue that P(B – B) = 0, which 

establishes that P(B) = sup<P(Bα)} = sup<P(Bα)} as needed for Lemma1a.  

 

Partition B – B into -many pairwise disjoint measurable null sets {A:  < }, with 

P(A) = 0, follows.   

  For    , let A  =  and, trivially, then P(A) = 0. 

  For   >  , a successor ordinal, let A = B B , a measurable set, 

with  P(A) = 0 since P(B) = P(B) = c. 

  For  > >  ,  a limit ordinal, let A = B  B .   Observe that  

B   B   B, and recall that P(B) – P(B) = 0.  As P is a complete measure, 

then  B  is measurable with P( B) = c.  Hence, P(A) = 0. 

 

Evidently,  A   = B – B.  By assumption, P is -additive1.  Then 0 = P(A) = 

P(B – B).  Therefore, P(B) = P(B) + P(B – B) = sup<P(B), which establishes that 

P is -additive2. Lemma 1a

 

Next, we offer Lemma 1b, a weakened version of the converse to Lemma 1a, which 

we use in the proof of Lemma 6.    
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Let {A: <   } be a -sequence of measurable, disjoint events, and let A be their 

union, also presumed measurable.  Define the upward nested sequence {B:  < }, 

as follows.   

  B0 = A0 

  If  = +1 is a successor ordinal, B  = B   {A} 

  If  is a limit ordinal, B = ∪ A. 

Then, for each < , B  = A and so A =  A =  B   

Condition {*}  The sequence {B:  < } contains a cofinal subsequence of measurable 

   events, which we denote {Bαβ
:   < } for some ordinal . 

Lemma 1b:  Let {A:  <   } be a -sequence of measurable, disjoint events, and let 

A be their measurable union.  Assume condition {*} applies to the sequence  {B:  < 

}.  If P is -additive2, then P(A) = P(A), in accord with -additivity1.    

Proof:   We are to show that P(A) = <P(A).  Without loss of generality, let P(A)  

P(A) if .  So, P(A) = 0 if    0.  Let C = ∪α<ω0
A .  So C  B and P(C) = 

Σα<ω0
P(A).  Let D = A  C.  So, P(A) = Σα<ω0

P(A) + P(D).  Thus, it is necessary and 

sufficient to show that P(D) = Σω0≤α<𝜆P(A) = 0.    We argue by induction on .  That 

is, assume that if  is a cardinal,  < , then the measurable union of -many P-null 

sets is P-null.  

 

Define the sequence {A: } by A  =  for  < 0 and A  = A  for 0   < .  So, 

for each , P(A) = 0.  Let {B:  < } be the upward nested sequence of events 

defined with respect to the sequence {A: }.  Then, D =  A  =  B.    

Assume Condition {*} applies to the sequence {B:  < }, yielding the cofinal 

subsequence of measurable events {B′αβ
:   < } for some ordinal .  As || <  for 

each  < , and as each B′αβ
 is a measurable set, by the hypothesis of induction then 

P(B′αβ
) = 0.  Hence, as P is ‐additive2, P(D) = sup P(B′αβ

) = 0, as required for -

additivity1. Lemma 1b 

Corollary:  If P is 1-additive2, then P is 1-additive1. 
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Proof:  The sufficient Condition {*} is trivially satisfied when  = 1.  That is, since B 

is a -field, each {B:  < } is measurable.Corollary 

 

In the light of Lemma1a, in order to generalize non-conglomerability to countably 

additive measures, we consider P-complete measure spaces that are not -additive2, 

and therefore not -additive1.  Trivially, when P is not -additive2 and  < , then P is 

not -additive2.  So, when P is not additive2, we focus on the least cardinal  where P 

is not -additive2.   

 

In particular, let  be the least cardinal where P is not -additive2, and   1.  Then 

 is a regular cardinal.  This is immediate from the observation that if P fails to be -

additive2 on the upward nested sequence of measurable events {B:  < }, with 

measurable limit B, then P fails to be -additive2 on each cofinal subsequence of the 

sequence {B}.  So, as  is the least cardinal where P is not -additve2, then  = 

cofinality(). 

 

Consider a P-complete measure space < , B, P>, where each point    is measurable 

(so B is an atomic algebra), and where P is countably additive but not -additive2. Here 

we show the main Proposition of this paper: 

 Subject to several structural assumptions on B  (presented in Section 3.1) the 

probability P fails to be conglomerable in some partition   of measurable 

events, where the cardinality of   at most . 

 

Thus, rather than thinking that non-conglomerability is an anomalous feature of 

finite but not countably additive probabilities, and that non-conglomerability arises 

solely with finitely but not countably additive probabilities in countable partitions, 

here we argue for a different conclusion.  Namely, we show that the cardinality  of a 

partition where P is non-conglomerable is bounded above by the (least) cardinal for 

which P is not -additive2 (and assuming that cardinal is not weakly inaccessible).  

 

2.  Tiers of points.  The proof of the main Proposition is based on the structure of a 

linear order over equivalence classes (which we call tiers) of points in   defined by 

the following relation between pairs of points. 

 

Definition 6:  Consider the relation, , of relative‐non-nullity on pairs of points in  . 
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That is, for points, and , they bear the relation provided that, either 

= , or else   and  0 < P({}| {, } ) < 1. 

 

Lemma 2:  is an equivalence relation. 

Proof: Only transitivity requires verification.  Assume 1 2 3. That is, assume 

0 < P({1} | {1, 2}), P({2}| {2, 3}) < 1. Then by condition (iii) of Definition 

1 of coherent conditional probabilities: 

 P({1}| {1, 2, 3}) = P({1}| {1, 2}) P({1, 2} | {1, 2, 3}).  Similarly,  

 P({3} | {1, 2, 3}) = P({3} | {2, 3}) P({2, 3} | {1, 2, 3}). 

Now argue indirectly by cases. 

• If P({1} | {1, 3}) = 0, then P({1} | {1, 2, 3}) = 0 and 

P({1, 2} | {1, 2, 3}) = 0, since by assumption P({1} | {1, 2}) > 0. Then 

P({2}| {1, 2, 3}) = 0 = P({2} | {2, 3}), which contradicts 2 3. 

• If P({1} | {1, 3}) = 1, then 0 = P({3} | {1, 3}) = P({3} | {1, 2, 3}). 

Then 0 = P({2, 3} | {1, 2, 3}), since 0 < P({3} | {2, 3}). 

So, 0 = P({2} | {1, 2, 3}) = P({2} | {1, 2}), which contradicts 1 2. 

 

Hence 0 < P({1} | {1, 3}) < 1, as required.Lemma 2 

 

The equivalence relation partitions   into disjoint tiers of relative non‐null pairs  

of points.  Evidently, if P({2} | {1, 2}) = P({3} | {2, 3}) = 1, then P({3} | {1, 3}) 

= 1. Thus, the tiers are linearly ordered by the relation , defined as follows: 

 

Definition 7a:  1 2 if for each pair {1, 2}, i i (i = 1, 2), P({2 } | {1, 2}) = 1. 

Since the reverse ordering also is linear, we express this as: 

Definition 7b:  2 1 if for each pair {1, 2}, i i (i = 1, 2), P({ 2 } | {1, 2}) = 1, 

i.e., if and only if 1 2. 

There is a tier of non-null points in this linear ordering, which we label �̂�. 

Definition 8:  Let �̂� = {: P() > 0}.  

Since |�̂�|  0, as B is a -field, �̂� is measurable.  It may be that �̂� = .  If �̂�  , then 

for each   �̂�, �̂�  .  That is, if  �̂�   then �̂� is the top tier in the linear ordering. 

 

3.   The Main Proposition and its Proof. 

3.1 Structural assumptions for the Proposition. 

The Proposition asserts that, subject to the six structural assumptions on B, 

presented below, when P is not--additive2 (and  is least) then non-

conglomerability obtains in some partition whose cardinality is bounded above by 

the same cardinal, .    
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We use a familiar partition of the fine structure of linear orderings to create three 

cases around which the proof of the main proposition is organized: 

Case 1: The linear order is a well order on the set of tiers.   

Case 2: The linear order is a well order on the set of tiers.   

Case 3:  There are two countable subsets L= {1, …, n, …} and M= {1, …, n, …} of       

       the set of tiers, each well ordered as the natural number (N <), respectively, by   

       and .   

As explained below, the proof of the Proposition is organized using five lemmas 

(Lemmas 3-7) in different combinations over these three cases.   Moreover, 

regarding the six structural assumptions, these too are used in different 

combinations for the five different Lemmas.  Thus, which subset of the six structural 

assumptions is used depends upon which of the three cases arises. 

 

Consider the measure space <, B, P>.  Regarding the cardinality  of P’s non-

additivity2, we assume that  is not a weakly inaccessible cardinal.  Combining this 

with the fact that  is regular (proven above), we have that the set of cardinals less 

than  has cardinality less than  – used in the proof of Lemma 6.  

 

Next, we state the six structural assumptions that we impose on B in order to secure 

sufficiently many measurable events for proving the central proposition.  We discuss 

the nature of these assumptions further in Section 6.  

Definition 9:  When T is a set of tiers, denote by T the subset of  formed by  

         the union of elements in T, the union of the tiers in T. 

Since P is countably additive but not -additive2, P(�̂�) < 1.   

 

Structural Assumptions: 

 SA1: Each point,   , is measurable. (Used with each of the five Lemmas 3-7.)  

 SA2: Each tier, , is measurable. (Used with each of the five Lemmas 3-7.) 

 SA3: Intervals of tiers form measurable sets.  For each tier ,  {: }  B and   

  {: }  B.  In this sense, “Dedekind cuts” in the linear order of   

  tiers create measurable sets. (Used in proving Lemmas 5, 6, and 7.) 

 SA4: Splitting non-null tiers. If P() > 0, there exist disjoint, measurable events  

  S1  S2 = , S1  S2 = , where || = |S1| = |S2|.  (Used with Lemma 3.) 

 SA5: Splitting a (non-null) linear order of uncountably many tiers when the linear  

  order is a well order.   
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  Suppose that T is an uncountable measurable set of tiers and  or  is a well- 

  order of the tiers in T.  Then the union of points in each of the following two  

  “successor” sets of tiers is measurable.  (Used with Lemmas 5, 6, and 7.) 

  (Note that if P(T) = 0, since P is complete, each subset of T is measurable.) 

   Todd is the set of tiers with “odd” ordinal index, ending “2n-1” for a  

    positive integer n > 0.   Then Todd is measurable. 

   Teven is the set of tiers with “even” ordinal index, ending “2n” for a  

    positive integer n > 0.  Then Teven is measurable.  

  Moreover, when P(T) > 0, the two “successor” sets are not both null: 

   P(Todd    Teven) > 0.  

  

SA6: The cardinality of tiers is a B-measurable function.  Specifically, for each cardinal 

 , {:  is a tier and || = }  B, and {:  is a tier and ||  }  B. 

 (Used with Lemma 6.) 

 

It is immediate from SA5 that when  or  is a well-order of the set of tiers in T then the 

set of points in tiers of T with limit ordinal index, Tlimit, also is measurable – since 

{Todd, Teven, Tlimit} forms a partition of T. 

 

3.2 The Proposition and its Proof. 

Proposition:  Let < , B, P> be a P-complete, countably additive measure space 

with conditional probabilities satisfying Definition 1, and which satisfies the six 

Structural Assumptions of Section 3.1.  Assume that P fails to be -additive2 for a 

cardinal , that  is the least such cardinal, and that it not weakly inaccessible. Then, 

there is a partition hof measurable events, where ||   and where P fails 

to be conglomerable in  .   That is, there exists a measurable event E, and an > 0 

where: 

P(E) > P(E | h) +  for each h  .Proposition 

 

As stated above, the proof of the Proposition proceeds using the five Lemmas 3-7.  

Lemmas 3 and 4 provide, respectively, one of two non-exclusive, non-exhaustive, 

Sufficient Conditions for non-conglomerability of P.  That is, there are models of the 

linear order of tiers satisfying each of the four Boolean combinations of these two 

Sufficient Conditions. 

 

Sufficient Condition 1:  There is a tier  below �̂� that is not null, P() > 0.  Lemma 3 

establishes that then P is non-conglomerable. 
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Sufficient Condition 2: There exist two sets of tiers, U and V, with P(V) > 0 and |U| 

= |V|, but where U is above V in the linear ordering of tiers.  That is, for each tier 1 

in U and each tier 2 in V, 12:  Lemma 4 establishes then P is non-conglomerable. 

 

Lemmas 5-7 address, respectively, one of the three exclusive and mutually 

exhaustive Cases for the linear order of tiers, repeated here for convenience.  

Case 1: The linear order is a well order on the set of tiers.  Lemma 5 establishes that 

P is non-conglomerable in this case. 

Case 2: The linear order is a well order on the set of tiers.  Lemma 6 establishes that 

P is non-conglomerable in this case. 

 

Case 3:  There are two countable subsets L= {1, …, n, …} and M= {1, …, n, …} of       

       the set of tiers, each well ordered as the natural number (N <), respectively, by   

       and .  Lemma 7 establishes that P is non-conglomerable in this case. 

 

The proofs of Lemmas 5, 6, and 7 rely on the two facts established by Lemmas 3 and 4 

that, if either of the two Sufficient Conditions obtains within one of the three Cases, then 

P is non-conglomerable.   

 

Proof of the Main Proposition:  

Let  be the least cardinal for which P is not additive2.   As noted before, then  is 

a regular cardinal.  

 
Lemma 3: Suppose there exists a non-null tier (of null points),   �̂�, P() > 0 – 

Situation 1 –  then P is not conglomerable.  

Proof: By the splitting condition, SA4, partition into two disjoint measurable sets, T0 

T1 = with T0 T1 = ; each with (uncountable) cardinality , |T0| = |T1| = .  

Label them so that P(T0) P(T1) = d > 0. 
 

 

We identify a partition with cardinality , which we write as = {h: < }, where  

P(T1 | h) < d/2 for each h  .  Each element h is a finite set. Each element 

hcontains at most one point from T1, and some positive finite number of points from 

T1, selected to insure that P(T1 | h) < d/2. 

 

By the Axiom of Choice, consider a -long well ordering of T1, {𝜔𝛽
1 :   < }.  We define 

by induction. Consider the countable partition of T0 into (not necessarily 
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measurable) sets: 

1,n = { T0: (n-1)/n  P({𝜔1
1
} | {𝜔1

1
, }) < n/(n+1)}, for n = 1, 2 … . 

Observe that n 1,n = T0. Since |T0| = 1, by the pigeon-hole principle consider 

the least n* such that 1,n* is infinite. Let measurable U1 = {1,1, …, 1,m} be m-many 

points chosen from 1,n*.  Note that P({𝜔1
1
} | U1 {𝜔1

1
})  n*/(m+n*).  Choose m 

sufficiently large so that n*/(m+n*) < d/2. Let h1 = U1 {𝜔1
1}. Since h1 is a finite set, 

it is measurable. 
 

 

For ordinals 1 < < , define h, by induction, as follows. Denoting T0,1 = T0, let T0,= 

T0 – (0<<h).  Since, for each 0 < <  , by hypothesis of induction his a finite set, 

then |0<<h| < .  So, |T0,| = . Since T0,is a subset of , just as above, consider 

the countable partition of T0,into sets 

 ,n  =  { T0,: (n-1)/n  P({𝜔𝛽
1 } |{𝜔𝛽

1 , }) < n/(n+1)}, for n = 1, 2, … .   

Again, by the pigeon-hole principle, consider the least integer n* such that  ,n* is 

infinite.  Let U= {,1, …, ,m} be m-many points chosen from ,n*.   Just as above, 

P({𝜔𝛽
1 | U{𝜔𝛽

1 })  n*/(m+n*).  Choose m sufficiently large that n*/(m+n*) < d/2. Let 

h=  U{𝜔𝛽
1 }), which also is finite, hence measurable.  Observe that T1 

0<<hand that for each 0 < < , P(T1 | h) < d/2.  

 

In order to complete the partition  , consider a catch‐all set S with all the remaining 

points   0<<h.  Note that each point S is not a member of T1.  So, for 

each S, P(T1 | {}) = 0.  So, for each point, S, add {} as a separate partition 

element of  . This insures that || =  and that P is not conglomerable in as P(T1) = d 

> 0, yet for each h  , P(T1 | h) < d/2.Lemma 3 

 

In Section 5, with Example 3, we illustrate the first Sufficient Condition and the 

argument of Lemma 3 using an ordinary continuous random variable.  We use 

Example 3 to explain a difference between the de Finetti/Dubins’ theory of 

conditional probability (Definition 1), and the familiar theory of regular conditional 

distributions. 

 

Next, Lemma 4  establishes Sufficient Condition 2 where P is non-conglomerable in a 

-sized partition of measurable events.  We use Lemma 4 frequently in the 

arguments for Lemmas 5, 6, and 7. 

 
Lemma 4: Let each of U and V be two disjoint sets of tiers, with V a measurable 

set.   (It is not necessary that U is B-measurable.)  Assume |U| =|V| =   , and 
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with U entirely above V in the linear ordering of tiers. That is, for each pair U U 

and v V, UV. If P(V) > 0, then P is not conglomerable.  

Proof: This is a straightforward cardinality argument.  Because UV, for each two 

points U U U and v V V, P({V} |{U, V}) = 0. Since |U| =|V| = , 

consider a 1-1 function to pair elements of U and elements of V.  Let these pair-

sets be elements of a -size partition,   = {h: for 0 < < ).  Complete the partition 

with the catch-all of singleton point sets,  {{   (U)(V)]}, if this set is 

not empty.  Then, || =  and for each h  , P(V |h) = 0.  If P(V) > 0, then P is 

not conglomerable.Lemma 4

 

Consider the linear orders and over the set of tiers, as defined in Section 2. Either 

or (exclusively) is a well order of the set of tiers, or (exclusively) there are two 

countable subsets L= {1, …, n, …} and M= {1, …, n, …} of the set of tiers, each well 

ordered as the natural number (N <), respectively, by  and : That is, then elements 

of Lsatisfy: m  n   and elements of Msatisfy mn   whenever n > m.  These three 

Cases are addressed in Lemmas 5, 6, and 7, respectively. 

 

Lemma 5: Suppose that, apart from �̂�, each tier in the linear order  is null (otherwise 

apply Lemma 3) and that is a well order – Case 1. Then P is not conglomerable. 

Proof:  We index the well order  of these null tiers with an initial segment of the 

ordinals.  Let be the least ordinal in this well order such that P(< ) > 0 and let R 

be this set of tiers.  R = {: < ). By SA3, R is measurable and let |R| =   .   

Evidently,  we may assume that is an uncountable limit ordinal, since P() = 0 for 

each tier other than �̂�. 

Use SA5 to partition R into two disjoint sets of tiers, T1 and T2, each with cardinality .  

For example, T1 might be the set of tiers with successor ordinal index – the union of 

Todd and Teven.  And T2 might be the set of tiers with limit ordinal index.  Then each of  T1 

and T2 is cofinal in the well order, , of R.  It is then an elementary fact that, there exist 

a pair of injective (increasing) functions  f:T1 T2 and g:T2 T1 where P({} | 

{, f()}) = 0 and P({} | {, g()}) = 0, whenever  is in the domain, respectively, of 

the function f or g, i.e., whenever  T1 or  T2, respectively.  That is, each of f 

and g maps each element of its domain into a distinct element of its range belonging to 

a higher tier in the well order .  In other words, f pairs each point in T1 with a point 

in T2 having a higher tier under . Likewise, g pairs each point in T2 with a point in 

T1 having a higher tier under . 
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Use the functions f and g to create two ‐size partitions,  f   and g, as defined below, 

and similar in kind to the partition used in Lemma 3. Without loss of generality, 

when considering f (respectively, g), index its domain – for f  that is the set of points 

 T1 (respectively for g, that is the set of points  T2) – using an initial 

segment of ordinals running through . That is, when considering f, write ∪T1 = {𝜔1
1, 

𝜔2
1, …, 𝜔𝛼

1 , …} with 0 <  < .  Similarly for g. Write ∪T2 = {𝜔1
2, 𝜔2

2, …, 𝜔𝛼
2 , …}. 

 

 

For each ordinal 0 < < , define the partition element hof  f   to be the pair-set 

h= {𝜔𝛼
1 , f(𝜔𝛼

1 )}.  As before, define the catch‐all set: T3 =   [T1 Range(f)].  And if 

this set is not empty, add its elements as singleton sets to create the -sized partition 

 f = {h1, …, h, …} T3.  Then, for each h  f , P(T1 | h) = 0.   In parallel fashion, with 

respect to function g, define g so that for each h g , P(T2 | h) = 0. 
 

Since P(R) > 0, and by SA5 at least one of T1 and T2 is not null, that is since 

maximum{P(T1), P(T2)} > 0, P is not conglomerable in at least one of these two 

partitions,  f and g. Lemma 5  

 

The following example alerts the reader that Cases 1 and 2, where respectively and 

well order the set of tiers, are sufficiently dissimilar that for a countable state space 

 only one is consistent with P being countably additive.   

 

Example 2.  Let   = {1, 2, …., n, …} be countable, which is not covered by the 

Proposition.  Then there is no countably additive probability P corresponding to Case 

2.  Specifically, let each point of  constitute its own tier with P({m}| {m, n}) = 0 

whenever m < n.  Then P({i}) = 0, i = 1, 2, …, contradicting the -additivity of P.  

However, if as in Case 4, P({m} | {m, n}) = 1 whenever m < n, then this well 

ordering of the tiers corresponds to a perfectly additive (principal ultrafilter) 0-1 

unconditional probability, where P has range {0, 1}, and where P({1}) = 1.  

Conditional probability also is 0-1, where, for each nonempty subset S ,      

P(E | S) = 1 if and only if E includes the minimal element of S.Example 2 

In the light of Example 2, the proof of non-conglomerability when  is a well order 

(Case 2 – Lemma 6) uses different reasoning than when  is a well order (Case 1 – 

Lemma 5), and shows that where P is conglomerable, it is concentrated on tiers with 

limit ordinal indices.  This contradicts SA5, which requires that the union of points in 

tiers with successor ordinal indices have positive probability. 
 

 

Lemma 6:  Suppose is a well order of the set of tiers, each of which is P-null – Case 
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2.  Then P is non-conglomerable.  

Proof:  We index the well order  of tiers with the ordinals less than  and where �̂� = 

.  So P(0<<) = d = 1 – P(�̂�) > 0, and let R be this interval of tiers below the top. 

 

Consider the partition (a “histogram”) of R according to the cardinality of each tier.  

That is, let C = {h: where  h if and only if || = , and  < }.   In the light of Lemma 

4, each tier has cardinality less than .  So C is a partition of the set of all tiers.  That is, 

h1 is the set of those tiers with exactly one point, {; hn is the set of those tiers with 

exactly n-points, and for each cardinal  <  his the set of tiers each with exactly -

many points.  Since  is regular and not weakly inaccessible, there are fewer than  

cardinals less than , |C| < .  By SA6, the cardinality of tiers is a measurable function. 

As |C| <  and P is -additive2 for each cardinal  < , by Lemma 1b,  h  C P(h) = 

P(R) = d > 0.   Thus, there is at least one uncountable set of tiers, h*   , such that 

P(h*) > 0.  

 

As h* is well ordered by , according to SA5 it can be partitioned into three disjoint 

measurable sets, where the first two (those tiers in h* with successor ordinal indices) 

are not both P-null.  

(A) Is the set of successor tiers in h* each with an even ordinal index ending “+2n” 

for integer, n = 1, 2, … .  

(B) Is the set of successor tiers in h* each with an odd ordinal index ending “+2n-1” 

for integer, n = 1, 2, … .  

(C) the set of tiers in h* each with a limit ordinal as its index.  For convenience, 

since 0 has no predecessor, we include the first element of h*, 0, in C. 

 

We construct two partitions.  The first partition shows that if P is conglomerable, then 

P(A) = 0.  The second partition shows that if P is conglomerable, then P(B) = 0.  

Together, this contradicts the final clause of SA5. 

 

To create the first partition, pair each tier in the set A 1-1 with its immediate 

predecessor tier in h*.  Since each tier in h* has a common cardinality, then pair, 1-1, 

each element of each tier in A with an element of its predecessor tier.  Let f be this 1-1 

pairing of points in A with points in the (predecessors-to-A).  Write these pairs as 

{, f()} where   A  h*.  Then, P({} | {, f()}) = 0 for each such pair, since f is 

regressive on the ordinals indexing tiers in A.  Complete the partition by adding all the 

singleton sets {} for   R – (A  Range(f)) and denote an arbitrary element of 

this partition hB   Then,  P(A | hB) = 0, which gives us P(A) = 0 by conglomerability of 

P.  
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Similarly, to create the partition targeted at showing P(B) = 0, use a 1-1 regressive 

function pair each element of the set of tiers B with its immediate predecessor tier in 

h* and continue the reasoning just as in the previous paragraph. 

 

The upshot is that if P is conglomerable in each of these two partitions, we have a 

contradiction with SA5 that requires that at least one of sets A and B is not P-

null.Lemma 6 

 

Remark:  Lemma 6 is established by finding two, 1-1 regressive functions for the 

ordinals, respectively, indexing set A and indexing set B.  But set C is stationary; hence, 

by Fodor’s (1956) “Pressing Down” lemma, there is no such 1-1 regressive function on 

C.  (See Jech (1978), p. 59.)  We do not know whether, if P(C) > 0, P is non-

conglomerable for a measurable event that is a subset of C.   
 

 

Lemma 7:  Assume that there are two countable sets of tiers M= {1, …, n, …} and 

N= {1, …, n, …} well ordered respectively as the natural numbers, ( , <).  

That is, the elements of Msatisfy: m  n   and elements of Nsatisfy m n   

whenever n > m – Case 3.   Then P is not conglomerable. 

 

Proof:  Combine the two sequences M and N to form a single countable set L, linearly 

ordered, either by or by .  Using the positive and negative rational numbers Q, we 

can represent this linear order L as one of five varieties, each variety corresponding to 

a subset of Q under its natural order.  

 

L1: Set M lies entirely below set  Nin L.  Then the order of tiers in L may be 

represented by the negative and positive integers.  That is, M has tiers i, for i = -1, -2, 

…, and Nhas tiers i  for i = 1, 2, … .  

 

L2:  Set M lies entirely above set Nin L.  Then the order in M may be represented    

by a set of rational numbers, {qi = 1+(1/i): i = 1, 2, …} and the order in N may be 

represented by a set of rational numbers, {q i = -(1+(1/i)): i = 1, 2, …} 

 

L3:  A tail of the sequence M lies between two elements of N but the tail of N is 

entirely above M.  

 

L4: A tail of the sequence N lies between two elements of M but the tail of M is 

entirely below N. 
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L5: A tail of the sequence M lies between two elements of N and a tail of N is lies 

between two elements of  M. 

 

In each case, the countably many tiers in the linear order L create a countable partition 

of all the tiers and, for convenience, consider the set R of all tiers other than �̂�, and 

where P(R) > 0. Partition the linear order R by using the elements of L to form cuts, in 

the fashion of Dedekind Cuts.  By SA3, these cuts produce measurable sets in R.  Since 

each such interval is defined using no more than countably many elements of L , the 

intervals are measurable. 

 

By Lemma 4, if P is conglomerable, and as it is countably additive, then one and only 

one of these countably many intervals is not null. Denote that interval I*0. That is, P(R) 

= P(I*0). Thus P is a 0-1 distribution on these countably many intervals.  Denote by 

I*0 the interval of tiers above I*0, and by I*


0 the interval of tiers below I*0. By SA3, 

each of  I*0 and  I*0 is measurable.  As P is -additive, P( I*0) = P( I*0) = 0. 

 

The linear order of tiers within the interval I*0 is again one of the three types, 

corresponding to Cases 1, 2, or 3. If I*0 produces a linear order that is a well order, 

corresponding to either Case 1 or 2, complete the argument by duplicating Lemma 5 

or Lemma 6 (respectively) applied to the interval I*0. If the linear order within I*0 is 

also an instance of Case 3, then repeat the reasoning to produce a subinterval, I*1 

I*0, where P(R) = P(I*1).   

 

We continue the argument, assuming that at each stage in the repetition of this 

reasoning the interval I*  has an internal linear structure corresponding to Case 3.  

Define the intervals I*  inductively.  At successor ordinals   = +1, create I* by 

applying the reasoning, above,  used to create I*1 from I*0.   At limit ordinals   let 

I*= I*for <  .   To see that these are measurable sets, define the two sequences 

of increasing “tail” intervals    

 I*


0  I*


1  … 

and  I*


0  I*


1  … 

By SA3, for each  the sets I*

  and I*


  are measurable, being “Dedekind 

cuts” in the linear ordering of tiers.  As I* = R – (I*

     I*


  ), also I* is 

measurable.  For each  < , P is -additive2.  So for each  P(I*) = P(I*) = 

0.  Therefore, for each , P(I*) = P(R). 
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Continue in this fashion until the resulting measurable interval I* satisfies P(I*) < 

P(R), which requires a -long sequence, since P is -additive2 for each  < .  Then 

there is a -long sequence of nested, measurable subintervals I*0 I*1 I*2 … 

I*…, with lim I*= I*, and for each , P(I*) = P(R), and P(I*) < P(R).  

 

Next, consider the two tail intervals formed by the cut at I*, I*


 and I*


, where I*


 is 

entirely below I* and I* is below I*

in the linear order of tiers.  There are two 

subcases to consider. 

 Subcase1 where |I*|= Since I*


 is entirely above I*
 in the linear 

ordering of tiers, by Lemma 4, if P is conglomerable, then P(I*) = 0.    So, in this 

subcase, we have that 0 < P(R)  P(I*) = P(I*


).  Use the -long well ordered 

upward-nested sequence {I*

:  < } to create a corresponding -long well-ordered 

sequence of disjoint, measurable (null) sets of tiers, {J*:  < }, that are downward 

ordered in the linear ordering of tiers, as follows.   

 

Let J*


0 = I*


0.  For a successor ordinal,   = +1, let J*

 = I*


  I* .  At limit 

ordinals J*

 = I*


  < I* .  Then, for each  <  < , the interval of tiers J*


  is 

measurable (being a subset of the P-null set I*

) and is entirely above the 

measurable interval of tiers J*

.  Note that these intervals, {J*


:  < }, partition I*


 

by measurable sets that are well-ordered downward in the linear ordering of tiers.    

Then adapt Lemma 6 to this downward well ordering of intervals to show that P is 

not conglomerable. 

 

 Subcase2 where |I*| =  < .  Then P(|I*|) = 0.  This follows since then I*


 

can be written as the limit of an upward-nested sequence, of length at most , of P-

null sets.  Since P is -additive2, then P(|I*|) = 0.  So, P(|I*|) = P(R)  P(I*) > 0.  

We adapt the reasoning of the previous subcase.  Use the -long well ordered 

upward-nested sequence {I*:  < } to create a corresponding -long well-ordered 

sequence of disjoint, measurable (null) sets of tiers, {J*:  < }, that are upward 

ordered in the linear ordering of tiers, as follows.   

 

Let J*


0 = I*


0.  For a successor ordinal,   = +1, let J*

 = I*


  I* .  At limit 

ordinals J*

 = I*


  < I* .  Then, for each  <  < ,  the interval of tiers J*


  is 
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measurable and entirely below the measurable interval of tiers J*

.  Note that these 

intervals, {J*:  < }, partition  I*


.  Then adapt Lemma 5 to this well order of 

intervals to show that P is not conglomerable. Lemma 7 

 

The Proposition is immediate from the five Lemmas 3, 4, 5, 6, and 7Proposition 

 

5.  An illustration of Sufficient Condition 1 – Lemma 3. 

In this section we illustrate Sufficient Condition 1, and the reasoning used in 

Lemma 3.  We use this illustration to explain a difference between the de 

Finetti/Dubins theory of conditional probability, as used in this paper, and the 

theory of regular conditional distributions from the received (Kolmogorovian) 

theory of Probability. 

 

Example 3:  Let < , B, P> be the complete measure space of Lebesgue measurable 

subsets of the half-‐‐open unit interval of real numbers:   = [0,1) and B is its algebra 

of Lebesgue measurable subsets. Let P be the uniform, countably additive Lebesgue 

probability with constant density function () = 1 for each real number 0  < 1, 

and () = 0 otherwise. So P({}) = 0 for each   . Evidently P is not =2
0 

additive1, because   is the union of 2
0-many null sets. 

 

 

As an illustration of Sufficient Condition 1 use the uniform density function to 

identify conditional probability given finite sets as uniform over those finite sets, as 

well. That is, when F = {1, …, k} is a finite subset of   with k‐many points, let P( | 

F) be the perfectly additive probability that is uniform on these k‐many points. 

These conditional probabilities create a single tier =  , as P({1} |{1, 2}) = 0.5 for 

each pair of points in  . 

 

However, by the countable additivity of P, it follows that each denumerable set of 

points is P-null. For example, with U = {1, 2, …, n, …} (for n < ), then P(U) = 0.  By 

Definition 1, then for each point   , P({} | U) = 0 and the conditional probability 

P(| U) is a finitely but not countably additive conditional probability function. 
 

 

Next, consider the two events E = {: 0  < 0.9} and its complement with respect to 

 , Ec = {: 0.9  < 1}, where P(E) = 0.9. This pair “splits” the sure event  . Let g be 

the 1-1 (continuous) map between E and Ec defined by g() = 0.9 + /9, for  

E.  Consider the ‐size partition of   by pair-sets, = {{, g()}:  E}.   By 
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assumption, P({} | {, g()}) = 1/2 for each pair in  . But then P is not 

conglomerable in  . 

 

The usual theory of regular conditional distributions treats the example differently. 

We continue the example from that point of view.  Consider the measure space      

< , B, P> as above.  Let the random variable X()= , so that X has the uniform 

distribution on  . In order to consider conditional probability given the pair of 

points {, g()}, let   

 g(X) = (X/9) + 0.9 if 0 X < 0.9 

           =  9(X 0.9) if 0.9 X < 1. 

Define the random variable Y() = X() + g(X()) 0.9. 

Observe that Y has the uniform distribution on the half-open interval [0, 1.0). Also, 

note that Y is 2-to-1 between   and [0.0, 1.0).  That is Y = y entails that either  = 0.9y 

or  = 0.1(y + 9). 

 

Let the sub-‐sigma field A be generated by the random variable Y.  The regular 

conditional distribution relative to this sub-‐sigma field, P(B | A)(), is a real-valued 

function defined on  that is A‐measurable and satisfies the integral equation 

∫A P(B | A)() dP() = P(A ∩ B) 

whenever A  A and B  B. 

 

In our case, then P[B |A]() almost surely satisfies: 

    P(X = 0.9Y | Y)() = 0.9 

  and  P(X = 0.1(Y+9.0) | Y)() = 0.1. 

Thus, relative to the random variable Y, this regular conditional distribution assigns 

conditional probabilities as if P({} | { , g()}) = 0.9 for almost all pairs {, g()} with 

0 ≤  < 0.9.  However, just as in the Borel “paradox” (Kolmogorov, 1933), for a 

particular pair {, g()}, the evaluation of P({} | { , g()}) is not determinate and is 

defined only relative to which sub-‐sigma field A embeds it.  

 

For an illustration of this last feature of the received theory of regular conditional 

distributions, consider a different pair of complementary events with respect to .  Let 

F = {: 0 ≤  < 0.5} and Fc = {: 0.5 ≤  < 1}.  So, P(F) = 0.5.   

Let        f(X)  = 1.0 – X  if 0 < X < 1. 

    =  0   if X = 0. 

 

Analogous to the construction above, let Z() = |X() – f(X())|.  So Z is uniformly 

distributed on [0, 1.0) and is 2-to-1 from  onto [0,1).  Consider the sub-‐sigma field 

A’ generated by the random variable Z.  Then the regular conditional distribution     
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P(B | A′)(), almost surely satisfies:  

   P(X = 0.5 – Z/2 | Z ≠ 0)() = 0.5  

and    P(X = 0.5 + Z/2 | Z ≠ 0)() = 0.5  

and for convenience, P(X = 0 |Z =0) = P(X = 0.5 | Z = 0) = 0.5.   

However, g(.09) = .91 = f(.09) and g(.91) = .09 = f(.91).  That is, Y = 0.1 if and only if Z = 

0.82.  So in the received theory, it is permissible to have P( = .09 | Y = 0.1) = 

0.9 as evaluated with respect to the sub-‐sigma field generated by Y, and also to have 

P( = .09 | Z = 0.82}) = 0.5 as evaluated with respect to the sub-‐sigma field generated 

by Z, even though the conditioning events are the same event. ◊Example 3 

 

6. Conclusion.  Given a probability P that satisfies the six structural assumptions of 

the Proposition, we show that non‐conglomerability of its coherent conditional 

probabilities is linked to the index of non-additivity2 of P. Specifically, assume P is not 

-additive2, and where  is least and is not a weakly inaccessible cardinal.  Then there 

is a ‐size partition = {h: < } where the coherent conditional probabilities {P(| 

h)} are not conglomerable. Namely, there exists an event E and a real number > 0 

where, for each h , P(E) > P(E | h) + . 

 

The structural assumptions that we impose on the -field B reflect the constraint 

imposed by one part of Ulam’s (1930) seminal finding, which applies when the state-

space  is uncountable, || =   1, when B includes each point in , and P is -

additive.  If  is not greater than a weakly inaccessible cardinal, then B cannot be the 

powerset of .  Because we do not want our findings to depend upon such a large 

cardinal assumption, we have to be cautious introducing measurable sets  in our study 

about conglomerability in -sized partitions.   

 

Without loss of generality, each countably additive probability can be completed by 

adding all subsets of each P-null set.  So, we use P-complete countably additive 

measure spaces.   As we explain, below, the six structural assumptions ensure that B 

is sufficiently rich for our study of non-conglomerability in large partitions, while 

being attentive to Ulam’s Theorem that B cannot be as large as the powerset of . 

 

Our study takes the equivalence relation of a tier of points as the central concept, 

which is defined using conditional probability given finite sets of points:  So 

singletons from  are required to be B-measurable (SA1).   Also, we require that 

tiers are measurable sets (SA2).  Since the tiers are linearly ordered and we consider 

sets of tiers above (and below) a given tier in this linear order, we require that 

intervals of tiers are measurable (SA3).   Taken together, SA1, SA2 and SA3 make the 
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linear order of tiers into a B-measurable function of the points in .   From this 

perspective, the last structural assumption, SA6, requires that the cardinality of tiers 

also is a B-measurable function. 

 

SA4 and SA5 are two “splitting” conditions.  The former precludes such extreme -

fields as when B is composed of countable/co-countable subsets of , where binary 

(measurable) partitions of a non-null set are required to be of unequal cardinality.  

The second “splitting” condition SA5 insures that when an uncountable set T of tiers 

is well ordered under the linear ordering of tiers, then the subset of tiers indexed 

with successor ordinals is not P-null if P(T) > 0, and that this subset of tiers can be 

further partitioned into two measurable subsets with the “odd” and “even” indices.   

This “splitting” ensures that when the liner order  is a well order, we have 

measurable, regressive functions on tiers whose domain includes a non-null set. 

 

The mutual consistency of these structural assumptions is evident for the simple 

case where || =  = 1 adapted to Example 3, as follows.   

Example 3a: Consider the P-complete measure space of Lebesgue measure on 

Lebesgue measurable subsets of the unit interval, under the Continuum Hypothesis.  

Then, as in Example 3, �̂� = , assume a single non-empty tier,  = .  SA1 is satisfied, 

since the atoms of B are the singletons of .  SA2, SA3, SA5, and SA6 are satisfied, 

trivially, because there is only one non-empty tier, , which is measurable.  SA4 is 

satisfied since the unit interval contains an uncountable, (measurable) null set, e.g. 

the Cantor set. Example 3a 

 

Next, with Example 4, we demonstrate that the five structural assumptions SA 1, SA2, 

SA3, SA5, and SA6 are jointly insufficient for the main Proposition.   

Example 4: Let <, B, P> be the countably additive measure space where: 

  || =  = 1, where  = {: 1}; 

 B is the smallest -field containing all singletons, i.e., B is the -field of 

countably/co-countable subsets of ;  

and    P({}) = 0, for each 1. 

So, for each E  B, either P(E) = 0 or P(E) = 1.  For 1, let A  = {:  } with 

P(A) = 0.   So {A: 1} is an upward nested sequence with lim A  = .  

Evidently, P is not 1-additive2.   
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As in Example 3, assume there is a single tier.  Hence, SA1 is satisfied, since the 

atoms of B are the singletons of .  SA2, SA3, SA5, and SA6 are satisfied, trivially, 

because there is only one non-empty tier, , which is measurable.  However, SA4 is 

not satisfied, as each measurable binary partition of  produces sets of unequal 

cardinality.   

 

Next, we establish that these conditional probabilities associated with the measure 

space <, B, P> are conglomerable.  If   is a countable partition of measurable 

events, then P is conglomerable in   as P is -additive.   So, consider an uncountable 

partition of measurable events,   = {h: h   B < 1}.  Note that if P fails to be 

conglomerable in   with respect to event E, then P fails to be conglomerable in   

with respect to the complementary event Ec.  So, let E  B with P(E) = 1.  Then, for all 

but a denumerable set of elements of  , h   E.  Hence, by coherence, P(E | h) = 1 

and P satisfies conglomerability in partition  , contrary to the conclusion of the 

Proposition. Example 4       

 

The Proposition permits us to conclude that the anomalous phenomenon of non-

conglomerability is a result of adopting the de Finetti/Dubins theory of coherent 

conditional probability instead of the rival Kolmogorovian theory of regula r 

conditional distributions.  It is not a result of the associated debate over whether 

probability is allowed to be merely finitely additive rather than satisfying countable 

additivity.  Restated, our conclusion is that even when P is ‐additive2 for each < , if 

P is not -additive2 and has coherent conditional probabilities, then P will experience 

non‐conglomerability in a -sized partition.  The received theory of regular 

conditional distributions sidesteps non-conglomerability by allowing conditional 

probability to depend upon a sub-sigma field, rather than being defined given an 

event. 
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