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Abstract
Letk be an uncountable cardinal. Using the theory of conditional probability
associated with de Finetti (1974) and Dubins (1975), subject to several structural
assumptions for creating sufficiently many measurable sets, and assuming that k is
nota weakly inaccessible cardinal, we show that each probability that is not -
additive has conditional probabilities that fail to be conglomerable in a partition of
cardinality no greater than k. This generalizes a result of Schervish, Seidenfeld,
and Kadane (1984), which established that each finite but not countably additive
probability has conditional probabilities that fail to be conglomerable in some
countable partition.
Key Words: k—additive probability, non-conglomerability, conditional probability,
regular conditional probability distribution, weakly inaccessible cardinal.

1. Introduction. Consider a finitely, but not necessarily countably additive
probability P(:) defined on a o-field of sets &, with sure-eventQ. Thatis,
<Q), &, P> is a (finitely additive) measure space.
LetB,C,D,E, F,Ge &,with B#Jdand FNG# J.
Definition 1. A finitely additive conditional probability function P(- | B), satisfies the
following three conditions:
(i) 0<P(CuD|B)=P(C|B)+P(D]|B), whenever C "D =O;
(ii) P(B|B)=1
Moreover, following de Finetti (1974) and Dubins (1975), in order to regulate
conditional probability given a non-empty event of unconditional or conditional
probability 0, we require the following.
(iii) P(ENF|G)=P(E|FnG)P(F|G).
As is usual, we identify the unconditional probability function P(-) with P(- | Q) and
refer to P(-) as a probability function. Call eventB P-null when P(B) =0

This account of conditional probability is not the usual theory from contemporary
Mathematical Probability. It differs from the received theory of Kolmogorovian
regular conditional distributions in four ways:

1. The theory of regular conditional distributions requires that probabilities and
conditional probabilities are countably additive. The de Finetti/Dubins theory
requires only that probability and conditional probability is finitely additive.
In this paper, we bypass most of this difference by exploring de Finetti/Dubins
conditional probabilities associated with countably additive unconditional
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probabilities. Specifically, we do notrequire that conditional probabilities are
countably additive.

2. When B is both P-null and not empty, a regular conditional probability given B
is relative to a sub-c-field # < & where B € 4 Butin the de Finetti/Dubins
theory of conditional probability, P( - | B), depends solely on the event B and

noton any sub-c-field that embeds it. Example 3, which we presentin Section
5, illustrates this difference.

3. Some countably additive probabilities do not admit regular conditional
distributions relative to a particular sub-c-field, even when both c-fields are
countably generated. (See Corollary 1 in Seidenfeld, Schervish, and Kadane
[2001].) In contrast, Dubins (1975) establishes the existence of full
conditional probability functions: where, given a set Q of arbitrary cardinality,
a conditional probability satisfying Definition 1 is defined with respectto each
non-empty element of its powerset, i.e.,, where £is the powerset of Q.
Hereafter, we require that each probability function includes its conditional
probabilities (in accord with Definition 1) given each non-empty eventB € &.
However, because we investigate conditional probabilities for a countably
additive unconditional probability, in light of Ulam’s Theorem [1930], we do
notrequire that 2 is the powerset of the state space Q.

4, Our focus in this paper is a fourth feature that distinguishes the
de Finetti/Dubins theory of conditional probability and the
Kolmogorovian theory of regular conditional probability. This aspect of
the difference involves conglomerability of conditional probability
functions.

LetIbean index setandlet & = {h;: i € I} be a partition of the sure event where the
conditional probabilities, P(E | h;) are well defined for eachE €# andi e L
Definition 2: The conditional probabilities P(E | h;) are conglomerable in n provided
that, for eacheventE 2 and real constants ki and kp,

if k1 <P(E| h;) <k;foreachj e thenk; <P(E) <k,

That is, conglomerability requires that the unconditional probability for eventE,
P(E) lies within the (closed) interval of conditional probability values,

{P(E | h)| i € I'}, with respectto elements h of a partition .

August 2016
Non-conglomerability for k—non-additive, c—additive probabilities



Conglomerability is an intuitively plausible property that probabilities might be
required to have. Suppose that one thinks of the conditional probability P(E|h;) as
representing one’s degree of belief in E if one learns that h;is true. Then P(E|h;) <k
for all i in I means that one believes that, no matter which h; one observes, one will
have degree of belief in E at most kz. Intuitively, one might think that this should
imply P(E) <k2 before learning which h;is true. That is, if one knows for sure that
one is going to believe that the probability of E is at most k2 after observing which h; is
true, then one should be entitled to believe that the probability of E is at mostk2 now.
This paper shows that this intuition is only good when the degree of additivity of the
probability matches (or exceeds) the cardinality of the partition.

Schervish, Seidenfeld, and Kadane (1984) show that if P is merely finitely additive
(i.e. if P is finitely but not countably additive) with conditional probabilities that

satisfy Definition 1, and P is defined on a c—field of sets, then P fails
conglomerability in some countable partition. That s, for each merely finitely

additive probability P there is an eventE, an € > 0, and a countable partition of
measurable events t ={hn:n =1, ...}, where
P(E) >P(E | hy) + ¢ foreach h, € m. )

The following example illustrates a failure of conglomerability for a merely finitely
additive probability P in a countable partition n = {hn: n € {1, 2, ...}}, where each
element of the partition is not P-null, i.e,, P(hn) > 0 for eachn € {1, 2, ...}. Then, by
both the theory of conditional probability according to Definition 1 and the theory of
regular conditional distributions (ignoring the requirement that probability is
countably additive), P(E | hn) = P(Enhn)/P(hn) is well defined. Thus, the failure of

conglomerability in this example is due to the failure of countable additivity, rather
than to a difference in how conditional probability is defined.

Example 1 (Dubins, 1975): Let the sureevent Q ={(i,n):i € {1,2}andn € {1, 2, ...}}
and Z be the powersetof Q. LetE = {{1,n}: n € {1, 2, ...}} and hn = {{1,n}, {2, n}},
and partition © = {hn:n € {1, 2, ...}}. Partially define the finitely additive probability
Pby: (i) P({i n})=1/2m1ifi=1,and P({i, n}) = 0ifi=2,

and (ii) P(E) =0.5.

So P is merely finitely additive over Ecand P(- | E€) is purely finitely additive. It
follows easily that P(hn) = 1/2m*1> 0 foreachn € {1, 2, ...}. Thus, P is not
conglomerable in  as: P(E€ | hn) = P(E€ » hn)/P(hn) = 0, foreachn € {1, 2, ...},

whereas P(E€) = 0. 5. Example 1

Kadane, Schervish, and Seidenfeld [1996] discuss this example in connection with
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the value of information. Also they show (1986, Appendix) that there exist countably
additive probabilities defined on the continuum such that, if conditional
probabilities are required to satisfy Definition 1 rather than being regular
conditional distributions, then non-conglomerability results in at least one
uncountable partition. Here we generalize that result to k-non-additive probabilities
that are countably additive. Throughout, we assume ZFC set theory.

Let<Q, & P> be a measure space, with P countably additive. Thatis, #is a o-field of
sets over Q. SetB is measurable means that B € & ThatP is a countably additive
probability is formulated with either of two equivalent, familiar definitions. That

these are equivalent definitions is immediate from the requirement that # is a 6—
field of sets. (See, e.g, Billingsley, 1995, p. 25.)

Definition 3a: Let {Ai:i=1, ... } be a denumerable sequence of measurable, pairwise
disjoint events, and let A be their union, which then is measurable as Zis a o-field.
Thatis, Ain Aj= O ifi #j, and A = Ui Ai. Pis countably additive; (in the first sense)
provided that P(A) = XiP(Ai) for each such sequence.

Definition 3b: Let{Bi:i=1, ... } be anincreasing denumerable sequence of
measurable events, with B their limit, which then is measurable. That is, Bi c Bjif i
<j,and B =i Bi. Then P is countably additive: (in the second sense) provided that
P(B) =1limiP(Bi) for each such sequence. Thatis, P is countably additive: provided it
is continuous over denumerable sequence of measurable events thatapproximate a
measurable event from below.

In this paper we examine non-conglomerability of a set of conditional probabilities
{P(E | h)} that satisfy (the de Finetti/Dubins) Definition 1, where these conditional
probabilities are associated with a countably additive unconditional probability, P,
that belongs to a measure space <Q, &, P>. How large do we require the c—field of
sets & be in order to have available sufficiently many well defined conditional
probabilities? By an important result of Ulam (1930), unless the cardinality of Q is
at least as greatas some inaccessible cardinal, # cannotbe the powerset of Q. (See,
e.g., Jech (1978), chapter 27.) However, without loss of generality, we may assume
that the measure space is P-complete and contains each point ® € Q. Thatis, if N € 3,
P(N) =0,and E c N,thenE € & See, e.g, Billingsley (1995, p. 44), Doob (1994, p.37),
or Halmos (1950, p. 55).

Our principal result here asserts that, subject to several structural assumptions to
assure richness of &, presented in Section 3.1, the non-conglomerability of P occurs
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in a partition by measurable events whose cardinality k is bounded above by the
extent of non-additivity of the countably additive probability P. We postpone to the
concluding Section 6 our discussion of the consistency of these structural
assumptions.

There are two, parallel definitions for generalizing from countable additivity (also
denoted c-additivity) to k-additivity. In the following, let o and 3 be ordinals, and
A and k be cardinals.

Definition 4a: Let{A,: a <A < «}be a sequence of A-many measurable, disjoint
events, and let A be their union, which also is presumed measurable. That is,
Ay NAg =D ifo#Bwith A= Uy < Ag.
P is x-additive; ifP(A) = X2 <; P(A,) for each such A-sequence.
Note: The infinite sum of a sequence of non-negative terms is the supremum over all

finite sums in the sequence. When the sequence are probabilities for terms in a
partition, at most countably many terms are positive.

Definition 4b (Armstrong and Prikry, 1980): Let{B,: a <A < «} be an increasing
sequence of A-many measurable events, where B,  Bg whenever a <f§ <A with B =
Uy < B, also measurable.

P is x-additive; if P(B) = sup,«, P(B,) for each such A-sequence.

That is, P is k-additivez provided that probability is continuous from below over A-long
sequences of measurable events that approach a measurable event from below.

Next, we show that for a complete measure space, k-additive: is sufficient for
k-additivez.

Lemma 1a: Let<Q,#, P>be aP-complete measure space with |Q| = k. P is k-additive:
only if it is k-additivez.

Proof

Consider a collection of measurable sets, {Bg:a <A} that are nested upwards, i.e.,

where B, c Bg whenever o <3 (and then P(Bg) 2 P(Bq)), and with measurable limit B.

Definition 5: Say that P increases at Bg if P(Bg) > supo<p P(Ba)-
Otherwise, P is constant at Bp, i.e., P(Bg) =supa<p P(Ba).

By finite additivity of P, P increases over the collection {Bg: o0 <A}, denumerably (i.e.
finitely or countably infinitely) many times. At all other places within the collection
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{Ba:a <A}, Pis constant.

Let{B,: a <A <«} be an upward nested A-length sequence of measurable events with

measurable limit B=uU,, B,. Consider the denumerable subsequence of {Bg:a <A}

where P increases. Index this subsequence with the countable ordinal y, so that P
increases exactly atthe sets {B%: 0 <v}. Then, as Zis a o-field, B+ = Ug<y Beg also is

measurable, and by countable additivity, P(B+) = sups<y {P (Bas)}.

If the subsequence {B,, : & <v} is cofinal in the sequence {By: o < A}, we are done as

then B- =B and P(B) = P(B+) = sups<y {P(B,,)} = supa<i {P(By)}. Otherwise, let & be
the least ordinal that bounds this countable subsequence of ordinals. Thatis, then B+
c Bsand 6 is least; so, ¢ = P(Bg) = P(B+). Then, for each ordinaln, 6 <n <A, also P(By)
=c. Thatis, P is constant on this measurable tail, {By: 6 <n <A}, of the sequence {B:

o <A}. We use the assumption that P is k-additive: to argue that P(B - B§) = 0, which

establishes that P(B) = supa<s {P(B,)} = supa<i {P(B,)}as needed for Lemmaia.

Partition B - B§ into A-many pairwise disjoint measurable null sets {Aq: o <A}, with
P(Aq) =0, follows.

For a <0,let Aq = & and, trivially, then P(Aq) = 0.

For B =o+1 >3, asuccessor ordinal, let Ag = Bo+1 — Ba, a measurable set,
with P(Ag) = 0 since P(Bg+1) =P(Bo) =c.

ForA >f >, alimit ordinal, let Ag = B — Uq<p Bo. Observe that
Bs < Ua<p Bo < Bp,and recall that P(Bp) - P(Bg) = 0. As Pis a complete measure,

then Ug <p B is measurable with P(Ug<g Bo) = ¢. Hence, P(Ag) = 0.

Evidently, Ug<) Aq, =B - Bg. By assumption, P is x-additive1. Then0=X%__, P(A,) =

P(B - Bg). Therefore, P(B) = P(Bs) + P(B - Bs) = sup,«;P(Ba), which establishes that

P is k-additivezx. oLemma la

Next, we offer Lemma 1b, a weakened version of the converse to Lemma 1a, which
we use in the proof of Lemma 6.
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Let{Aq: o <A <k} be aA-sequence of measurable, disjoint events, and let A be their

union, also presumed measurable. Define the upward nested sequence {Bg: o <A},
as follows.

Bo = Ao
If aBl= B+1is asuccessor ordinal, Bo, = Bp U {Ap+1}
If o Bis a limit ordinal, Bo, B= Up<o HAB.
Then, for each o <A, Bg = UB<a Apand so A =Ug<i Ag = Ua<i Ba.

Condition {*} The sequence {Bg: o <A} contains a cofinal subsequence of measurable

events, which we denote {BO‘B: B <y} for some ordinal y < A.

Lemma 1b: Let {Ag: o <A <k} be aA-sequence of measurable, disjoint events, and let

A be their measurable union. Assume condition {*} applies to the sequence {Bg: o <

A}. If Pis k-additivez, then P(A) = Zo<3P(A,), in accord with k-additivity1.

Proof: We are to show that P(A) = 24 <)\ P(Aq ). Withoutloss of generality, let P(Aq) >
P(Ap) if B > a.. So,P(Ag)=0if B >wo. LetC= Ug<w, Aa- S0 C e &and P(C) =
Za<w,P(Aa). LetD=A—-C. So, P(A) = Za<m0P(Aa) + P(D). Thus, it is necessary and

sufficient to show that P(D) = ZmosoK)LP(A(X) =0. Weargue byinduction on A. That

is, assume that if 1 is a cardinal, ) < A, then the measurable union of n-many P-null
sets is P-null.

Define the sequence {A'q: o <A} by A'q = fora<woand A'q = Aq for @mo<a <. So,
foreachoa <A, P(A’q) =0. Let{B'q: o <A} be the upward nested sequence of events
defined with respectto the sequence {A'q.: o < A}. Then,D =Ug <) A'q, = Ua <) B'a-

Assume Condition {*} applies to the sequence {B’q: o <A}, yielding the cofinal

subsequence of measurable events {B’%: B <v}for some ordinaly < A. As |a| <A for

each a <2, and as each BI“B is a measurable set, by the hypothesis of induction then
P(B’%) =0. Hence, as P is x-additivez, P(D) = supp<y P(B’aB) =0, asrequired for k-
additivity1. yLemma1b

Corollary: 1If P is X1-additivez, then P is X1-additives.
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Proof: The sufficient Condition {*} is trivially satisfied when k = N1. That s, since &

is a o-field, each {Bq: o <A} is measurable. ycorollary

In the light of Lemmaia, in order to generalize non-conglomerability to countably
additive measures, we consider P-complete measure spaces thatare not k-additivez,
and therefore not k-additive1. Trivially, when P is not A-additivez and A <k, then P is
notk-additivez. So, when P is notadditivez, we focus on the least cardinal k where P
is not k-additivex.

In particular, let ¥ be the least cardinal where P is not k-additivez, and k > X1. Then
K is a regular cardinal. This is immediate from the observation that if P fails to be «-

additive2 on the upward nested sequence of measurable events {B: a <k}, with

measurable limit B, then P fails to be k-additivez on each cofinal subsequence of the

sequence {Bg}. So,as « is the least cardinal where P is not k-additvez, then k =
cofinality ().

Consider a P-complete measure space <Q, &, P>, where each point ® € Q is measurable
(so Zis an atomic algebra), and where P is countably additive but not x-additivez. Here

we show the main Proposition of this paper:

e Subject to several structural assumptions on & (presented in Section 3.1) the
probability P fails to be conglomerable in some partition © of measurable
events, where the cardinality of © at most «.

Thus, rather than thinking that non-conglomerability is an anomalous feature of
finite but not countably additive probabilities, and that non-conglomerability arises
solely with finitely butnot countably additive probabilities in countable partitions,
here we argue for a different conclusion. Namely, we show that the cardinality A ofa
partition where P is non-conglomerable is bounded above by the (least) cardinal for
which P is not k-additive2z (and assuming that cardinal is not weakly inaccessible).

2. Tiers of points. The proof of the main Proposition is based on the structure of a
linear order over equivalence classes (which we call tiers) of points in Q defined by
the following relation between pairs of points.

Definition 6: Consider the relation, ~, of relative-non-nullity on pairs of points in Q.
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That is, for points, o, and g, they bear the relation o, ~ g provided that, either

o, =0, or else o, #wgand 0 <P{o,}| {v, wg}) <1.

Lemma 2: ~ is an equivalence relation.
Proof: Only transitivity requires verification. Assume ®; ~ ®2~ ®3. That is, assume
0 < P{w1} | {o1, ®2}), P({w2}| {w2, ®3}) < 1. Then by condition (iii) of Definition
1 of coherent conditional probabilities:
P({o1}| {01, ®2, ®3}) = P{w1}| {01, ©2}) P({o1, 2} | {®1, 02, ®3}). Similarly,
P({w3} | {o1, w2, ®3}) = P({w3} | {02, ®3}) P({w2, ®3} | {®1, ®2, ®3}).
Now argue indirectly by cases.
. If P({w1} | {o1, ®3}) =0, then P({w1} | { ®1, w2, ®3}) = 0 and
P({w1, 2} | {1, ®2, ®3}) = 0, since by assumption P({®1} | {®1, ®2}) > 0. Then
P({®2}| {®1, ®2, ®3}) = 0 = P{w2} | {®2, ®3}), which contradicts w2~ 3.
. If P{ow1} | {01, ®3}) =1, then 0 = P({ws} | {®1, ®3}) = P({w3} | {®1, ®2, ®3}).
Then 0 = P({w2, @3} | {®1, ®2, ®3}), since 0 < P({ws3} | {w2, ®3}).
So,0 =P({w2} | {w1, ©2, w3}) =P({w2} | {w1, ®2}), which contradicts ®; ~ w>.

Hence 0 < P({w1} | {01, ®3}) < 1,as required.¢Lemma 2

The equivalence relation ~ partitions Q into disjoint tiers t of relative non-null pairs
of points. Evidently, if P({wz2} | {®1, ®2}) = P({®3} | {®2, ®3}) =1, then P({w3} | {®1, ®3})
= 1. Thus, the tiers are linearly ordered by the relation ~, defined as follows:

Definition 7a: 117 12 if for each pair {®1, ®2}, @i € 1i (i = 1, 2), P({w2} | {01, w2}) = 1.
Since the reverse ordering also is linear, we express this as:

Definition 7b: 124 t1if for each pair {01, ®2}, ®i € ti (i= 1, 2), P{w 2} | {01, ®2}) = 1,
i.e, ifand only if 11 T 12

There is a tier of non-null points in this linear ordering, which we label 7.
Definition 8: Let T = {®: P(®w) > 0}.

Since || £ No, as Zis a o-field, 7 is measurable. It may be that T = J. If T # J, then
foreacht#%, 7 { 1. Thatis, if 7% & then 7 is the top tier in the linear ordering.

3. The Main Proposition and its Proof.
3.1 Structural assumptions for the Proposition.

The Proposition asserts that, subject to the six structural assumptions on 3,
presented below, when P is not-k-additive: (and « is least) then non-
conglomerability obtains in some partition whose cardinality is bounded above by
the same cardinal, «.
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We use a familiar partition of the fine structure of linear orderings to create three
cases around which the proof of the main proposition is organized:

Case 1: The linear order T is a well order on the set of tiers.

Case 2: The linear order Y is a well order on the set of tiers.

Case 3: There are two countable subsets L | = {1, ..., Th, ...} and M4 = {11, ..., Ty, ...} Of

the set of tiers, each well ordered as the natural number (N <), respectively, by ¥
and 7.

As explained below, the proof of the Proposition is organized using five lemmas
(Lemmas 3-7) in different combinations over these three cases. Moreover,
regarding the six structural assumptions, these too are used in different
combinations for the five different Lemmas. Thus, which subset of the six structural
assumptions is used depends upon which of the three cases arises.

Consider the measure space <Q, &, P>. Regarding the cardinality k of P’s non-
additivity2, we assume that « is nota weakly inaccessible cardinal. Combining this
with the fact that « is regular (proven above), we have that the set of cardinals less
than « has cardinality less than k — used in the proof of Lemma 6.

Next, we state the six structural assumptions that we impose on # in order to secure
sufficiently many measurable events for proving the central proposition. We discuss
the nature of these assumptions further in Section 6.

Definition 9: When T is a set of tiers, denote by UT the subset of Q2 formed by
the union of elements in T, the union of the tiers in T.

Since P is countably additive but not k-additivez, P(7) < 1.

Structural Assumptions:
SA1: Each point, ® € Q, is measurable. (Used with each of the five Lemmas 3-7.)
SAz: Each tier, 7, is measurable. (Used with each of the five Lemmas 3-7.)
SAs: Intervals of tiers form measurable sets. For each tier v/, U{t: 41} € £and

U{t: Tt} € & Inthis sense, “Dedekind cuts” in the linear order of
tiers create measurable sets. (Used in proving Lemmas 5, 6, and 7.)

SA4: Splitting non-null tiers. If P(t) > 0, there exist disjoint, measurable events
S11 S2=0,851 US2 =1, where |t| = |S1| = [S2]. (Used with Lemma 3.)

SAs: Splitting a (non-null) linear order of uncountably many tiers when the linear
order is a well order.
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Suppose that T is an uncountable measurable set of tiers and dor Tis a well-
order of the tiersin T. Then the union of points in each of the following two
“successor” sets of tiers is measurable. (Used with Lemmas 5, 6, and 7.)
(Note that if P(T) = 0, since P is complete, each subset of T is measurable.)

Toda is the set of tiers with “odd” ordinal index, ending “2n-1" for a
positive integer n > 0. Then UTodq is measurable.

Teven is the set of tiers with “even” ordinal index, ending “2n” for a
positive integer n > 0. Then UTeven is measurable.

Moreover, when P(T) > 0, the two “successor” sets are not both null:

P(UTodd U UTeven) > 0.

SAs: The cardinality of tiers is a #-measurable function. Specifically, for each cardinal
ALk {t:tisatier and |t| =L} € & and U{t: T is atier and |t| <A} € &.

(Used with Lemma 6.)

It is immediate from SAs that when { or T is a well-order of the set of tiers in T then the
set of points in tiers of T with limit ordinal index, UTiimit, also is measurable - since
{Todd, Teven, Tiimit} forms a partition of T.

3.2 The Proposition and its Proof.
Proposition: Let <Q, &, P>be a P-complete, countably additive measure space
with conditional probabilities satisfying Definition 1, and which satisfies the six
Structural Assumptions of Section 3.1. Assume that P fails to be k-additive2 for a
cardinal k, that « is the least such cardinal, and that it not weakly inaccessible. Then,

there is a partition © = {hy:1 € I} of measurable events, where || <k and where P fails
to be conglomerable in t. Thatis, there exists a measurable eventE, andan ¢ >0
where:

P(E) >P(E | h) + ¢ for each h em.; proposition

As stated above, the proof of the Proposition proceeds using the five Lemmas 3-7.
Lemmas 3 and 4 provide, respectively, one of two non-exclusive, non-exhaustive,
Sufficient Conditions for non-conglomerability of P. That is, there are models of the
linear order of tiers satisfying each of the four Boolean combinations of these two
Sufficient Conditions.

Sufficient Condition 1: There is a tier T below T that is notnull, P(t) > 0. Lemma 3
establishes that then P is non-conglomerable.
11
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Sufficient Condition 2: There exist two sets of tiers, U and V, with P(UV) > 0 and [UU]|
= |UV|, but where U is above V in the linear ordering of tiers. That is, for each tier 11
in U and each tier 12 in V, t1412: Lemma 4 establishes then P is non-conglomerable.

Lemmas 5-7 address, respectively, one of the three exclusive and mutually

exhaustive Cases for the linear order of tiers, repeated here for convenience.

Case 1: The linear order T is a well order on the setof tiers. Lemma 5 establishes that
P is non-conglomerable in this case.

Case 2: The linear order { is a well order on the setof tiers. Lemma 6 establishes that
P is non-conglomerable in this case.

Case 3: There are two countable subsets L = {1, ..., T, ...} and My = {1"1, ..., T'n, ...} Of

the set of tiers, each well ordered as the natural number (N <), respectively, by ¥

and T. Lemma 7 establishes that P is non-conglomerable in this case.

The proofs of Lemmas 5, 6, and 7 rely on the two facts established by Lemmas 3 and 4
that, if either of the two Sufficient Conditions obtains within one of the three Cases, then
P is non-conglomerable.

Proof of the Main Proposition:

Letx be the least cardinal for which P is not k—additive2. As noted before, then kis
aregular cardinal.

Lemma 3: Suppose there exists a non-null tier (of null points), t# 7, P(t) > 0 -
Situation 1 - then P is not conglomerable.

Proof: By the splitting condition, SAs, partition 1 into two disjoint measurable sets, To
N T1 =& with To U T1 = 1; each with (uncountable) cardinality A, |To| = |T1] = A <«
Label them so that P(To) < P(T1)=d > 0.

We identify a partition with cardinality k, which we write as n = {h: a <}, where

P(T1| h) <d/2foreach h € n. Each elementh € r is a finite set. Each element
h, contains at most one point from T1, and some positive finite number of points from

Q-Ty, selected to insure that P(T1 | h) <d/2.

By the Axiom of Choice, consider a A-long well ordering of Ty, {w};; B <A}. We define

n by induction. Consider the countable partition of To into (not necessarily
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measurable) sets:

pin={o € To: (n-1)/n < P{w1} | {01, ®}) < n/(n+1)}, forn=1,2 ... .
Observe that n p1in= To. Since |To| =A > X1, by the pigeon-hole principle consider
the least n* such that p1+ is infinite. Let measurable U1 = {®1,4, ..., ®1,m} be m-many
points chosen from p1n+. Note thatP({wi} | U1 U {@1}) < n*/(m+n*). Choose m
sufficiently large so that n*/(m+n*) <d/2. Lethi = U1 U {®1}. Since hi is a finite set,
it is measurable.

For ordinals 1 < 3 <A, define hB' by induction, as follows. Denoting To1 = To, let To,B =
To - (Up<u<p No)- Since, for each 0 <a <, by hypothesis of induction h, is a finite set,
then [Upeq<p hy| <. So, [Tog| =A. Since Tog is a subset of 1, just as above, consider
the countable partition of Tog into sets

ppn = {0 & Tog: (n-1)/n < P({wp} [{wp, ©}) < n/(n+1)}, forn=1,2, ....
Again, by the pigeon-hole principle, consider the least integer n* such that pga-is
infinite. LetUg ={wpy, ..., ®gm} be m-many points chosen from pg »*. Justasabove,
P({wp] U w {w;}) < n*/(m+n*). Choose m sufficiently large that n*/(m+n*) <d/2. Let
hg = Ug U {a)};}), which also is finite, hence measurable. Observe thatT1
C Ug<p<y hp and thatforeach 0 < § <, P(T1| hg) <d/2.

In order to complete the partition 7, consider a catch-all set S with all the remaining
points wg € Q — Up<p<y, hg. Note that each point € S is not amember of T1. So, for

eacho € S, P(T1 | {o}) =0. So, for each point, ® € S, add {®} as a separate partition
element of n. This insures that || = k and that P is not conglomerable in & as P(T1) =d
>0, yetforeachhe n,P(T1| h) <d/2.Lemma 3

In Section 5, with Example 3, we illustrate the first Sufficient Condition and the
argument of Lemma 3 using an ordinary continuous random variable. We use
Example 3 to explain a difference between the de Finetti/Dubins’ theory of
conditional probability (Definition 1), and the familiar theory of regular conditional
distributions.

Next, Lemma 4 establishes Sufficient Condition 2 where P is non-conglomerable in a
k-sized partition of measurable events. We use Lemma 4 frequently in the
arguments for Lemmas 5, 6, and 7.

Lemma 4: Let each of U and V be two disjoint sets of tiers, with _V a measurable

set. (Itis notnecessary that UU is &-measurable.) Assume |UU| =|UV| =A<« and
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with U entirely above V in the linear ordering of ¥ tiers. Thatis, for each pair tv € U
and tv € V, tudtv. If P(LV) >0, then P is not conglomerable.

Proof: This is a straightforward cardinality argument. Because tu<tv, for each two
points wu € v € Uand ov € v e V,P({ov} |{ou, ov}) = 0. Since [UU| =|uV| = A,
consider a 1-1 function to pair elements of UU and elements of UV. Letthese pair-
sets be elements of a k-size partition, n = {h_:for 0 < a <x). Complete the partition
with the catch-all of singleton point sets, {{o}: ® € Q-[(UU)U(LV)]}, if this setis

notempty. Then, |n| =« and for each h € ©, P(Uv |h) =0. If P(Uv) >0, then P is
not conglomerable. 1emma 4

Consider the linear orders T and { over the set of tiers, as defined in Section 2. Either
T or (exclusively) ¥ is a well order of the set of tiers, or (exclusively) there are two
countable subsets L = {1}, ..., Th, ...} and My = {14, .., T'n, ...} of the set of tiers, each well
ordered as the natural number (N <), respectively, by { and T: That is, then elements

of L satisfy: t'm ! th and elements of M+ satisfy ©'mT t'n whenever n > m. These three

Cases are addressed in Lemmas 5, 6,and 7, respectively.

Lemma 5: Suppose that, apart from 7, each tier in the linear order T is null (otherwise
apply Lemma 3) and that T is a well order - Case 1. Then P is not conglomerable.
Proof: We index the well order T of these null tiers with an initial segment of the
ordinals. LetBbe the least ordinalin this well order such that P(Uy<g 7,) > 0 and let R
be this set of tiers. R ={r,: a <f3). By SA3, UR is measurable and let |UR| =A<«
Evidently, we may assume that f3 is an uncountable limit ordinal, since P(t,) = 0 for

each tier other than 7.

Use SAs to partition R into two disjoint sets of tiers, T; and T, each with cardinality A.
For example, T1 might be the set of tiers with successor ordinal index - the union of
Todq and Tepen. And T2 might be the set of tiers with limit ordinal index. Then each of T1
and Tz is cofinal in the well order, T, of R. Itis then an elementary fact that, there exist
a pair of injective (increasing) functions f:uT1 — UTz2and g:uT2 — UT1 where P({o} |
{®, fl®w)}) =0and P({w} | {0, g(®)}) = 0, whenever o is in the domain, respectively, of
the function for g, i.e, whenever ® € UT1 or ® € UT?, respectively. That s, each of f
and g maps each element of its domain into a distinct element of its range belonging to
a higher tier in the well order T. In other words, fpairs each pointin UT; with a point
in UT, having a higher tier under T. Likewise, g pairs each pointin UT; with a point in
Ty having a higher tier under 7.

14
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Use the functions fand g to create two k-size partitions, nf and mg, as defined below,
and similar in kind to the partition used in Lemma 3. Without loss of generality,

when considering f (respectively, g), index its domain - for f thatis the set of points

o € UT1 (respectively for g, that is the set of points ® € UT2) - using an initial

segment of ordinals running through A. That is, when considering f, write UT1 = {w],
2

W3, wy W, ..} With 0 < o <A. Similarly for g. Write UTz = {w?, w2, .., w3, ..}.

For each ordinal 0 < a <A, define the partition element h, of nf to be the pair-set
hy ={w}, flwl)}. Asbefore, define the catch-all set: Tz = Q — [UT1 U Range(f)]. And if

this set is not empty, add its elements as singleton sets to create the k-sized partition
ny={h1, ..., h,, ..} U T3. Then, for each h € =y, P(T1 | h) = 0. In parallel fashion, with

respect to function g, define ngso that for each h € ng, P(T2 | h) = 0.

Since P(R) > 0, and by SAs at least one of T1 and T2 is not null, that is since
maximum{P(T1), P(T2)} > 0, P is not conglomerable in at least one of these two

partitions, nrand mg. Lemma s

The following example alerts the reader that Cases 1 and 2, where respectively T and
! well order the set of tiers, are sufficiently dissimilar that for a countable state space
Q only one is consistent with P being countably additive.

Example 2. Let Q = {01, ®2, ..., On, ...} be countable, which is not covered by the
Proposition. Then there is no countably additive probability P corresponding to Case
2. Specifically, let each point of Q constitute its own tier with P({®m}| {®m, wn}) =0
whenever m <n. Then P{wi}) =0,1=1, 2, ..., contradicting the c-additivity of P.
However, if as in Case 4, P({®m} | {®>m, ®n}) =1 whenever m < n, then this well
ordering of the tiers corresponds to a perfectly additive (principal ultrafilter) 0-1
unconditional probability, where P has range {0, 1}, and where P({m1}) = 1.
Conditional probability also is 0-1, where, for each nonempty subset @ # S Q,

P(E | S) =1 if and only if E includes the minimal element of S. Example 2

In the light of Example 2, the proof of non-conglomerability when { is a well order
(Case 2 - Lemma 6) uses different reasoning than when T is a well order (Case 1 -
Lemma 5), and shows that where P is conglomerable, it is concentrated on tiers with
limit ordinal indices. This contradicts SAs, which requires that the union of points in
tiers with successor ordinal indices have positive probability.

Lemma 6: Suppose { is a well order of the set of tiers, each of which is P-null - Case
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2. Then P is non-conglomerable.
Proof: We index the well order { of tiers with the ordinals less than k and where =
Tp. S0 P(Wo<y<c 7o) = d=1-P(#) >0, and let R be this interval of tiers below the top.

Consider the partition (a “histogram”) of R according to the cardinality of each tier.

That is, let tc={h): where t € h), if and only if |t| =A, and A < x}. In the light of Lemma
4, each tier has cardinality less than k. So ncis a partition of the set of all tiers. That s,
h1 is the set of those tiers with exactly one point, {®}; hn is the set of those tiers with

exactly n-points, and for each cardinal A <k, hj, is the setof tiers each with exactly A-
many points. Since k is regular and not weakly inaccessible, there are fewer than
cardinals less than k, |nc| < k. By SAs, the cardinality of tiers is a measurable function.

As |nc| <k and P is A-additivez for each cardinal A <k, by Lemma 1b, >» ¢ nc P(Uh) =

P(R) =d > 0. Thus, there is at least one uncountable set of tiers, h* € &, such that
P(uh*) > 0.

As h* is well ordered by |, according to SAs it can be partitioned into three disjoint
measurable sets, where the first two (those tiers in h* with successor ordinal indices)
are notboth P-null.
(A) Is the set of successor tiers in h* each with an even ordinal index ending “+2n”
forinteger,n=1, 2, ....
(B) Is the set of successor tiers in h* each with an odd ordinal index ending “+2n-1"
forinteger,n=1, 2, ....
(C) the setof tiers in h* each with a limit ordinal as its index. For convenience,
since 0 has no predecessor, we include the first element of h*, 1o, in C.

We construct two partitions. The first partition shows that if P is conglomerable, then

P(UA) = 0. The second partition shows that if P is conglomerable, then P(UB) = 0.
Together, this contradicts the final clause of SAs.

To create the first partition, pair each tier in the set A 1-1 with its immediate
predecessor tier in h*. Since each tier in h* has a common cardinality, then pair, 1-1,
each element of each tier in A with an element of its predecessor tier. Let fbe this 1-1
pairing of points in WA with points in the U(predecessors-to-A). Write these pairs as
{0, f(m)} where ® € A c h*. Then, P({o} | {», f(®)}) = 0 for each such pair, since fis
regressive on the ordinals indexing tiers in A. Complete the partition by adding all the
singleton sets {®} for ® € UR - (UA U Range(f)) and denote an arbitrary element of
this partition hs Then, P(UA | hg) = 0, which gives us P(A) = 0 by conglomerability of
P.
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Similarly, to create the partition targeted at showing P(UB) = 0, use a 1-1 regressive

function pair each element of the set of tiers B with its immediate predecessor tier in
h* and continue the reasoning justas in the previous paragraph.

The upshotis that if P is conglomerable in each of these two partitions, we have a
contradiction with SAs that requires thatat least one of sets WA and UB is not P-

null-Lemma 6

Remark: Lemma 6 is established by finding two, 1-1 regressive functions for the
ordinals, respectively, indexing set A and indexing set B. Butset C is stationary; hence,
by Fodor’s (1956) “Pressing Down” lemma, there is no such 1-1 regressive function on
C. (See]Jech (1978), p. 59.) We do not know whether, if P(LUC) >0, P is non-
conglomerable for a measurable event that is a subset of UC.

Lemma 7: Assume that there are two countable sets of tiers M| ={t'y, ..., T, ...} and
N4 ={t""1, ..., t""n, ...} well ordered respectively as the natural numbers, (N, <).
That is, the elements of M satisfy: t'm ¥ 'n and elements of Ny satisfy v'm T "

whenever n > m - Case 3. Then P is not conglomerable.

Proof: Combine the two sequences M| 3nq N+ to form a single countable set L, linearly

ordered, either by T or by J. Using the positive and negative rational numbers 2, we
canrepresent this linear order L as one of five varieties, each variety corresponding to
a subset of 2 under its natural order.

L1: Set M| lies entirely below set N+ in L. Then the order of tiers in L may be

represented by the negative and positive integers. That is, M| has tiers 1, fori=-1, -2,

.., and Nt has tiers ti fori=1,2, ....

L2: Set M| lies entirely above set N+ in L. Then the order in M| may be represented

by a set of rational numbers, {qi= 1+(1/i):i= 1,2, ...} and the orderin N+ may be
represented by a set of rational numbers, {qi=-(1+(1/i)):i=1, 2, ...}

Ls: Atail of the sequence M! lies between two elements of N7 but the tail of N7 is

entirely above M|,

La: A tail of the sequence N1 lies between two elements of M{ but the tail of My is
entirely below N*.
17
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Ls: A tail of the sequence M| lies between two elements of Nt and a tail of N7 is lies
between two elements of MJ,

In each case, the countably many tiers in the linear order L create a countable partition
of all the tiers and, for convenience, consider the set R of all tiers other than £, and
where P(R) > 0. Partition the linear order R by using the elements of L to form cuts, in
the fashion of Dedekind Cuts. By SAs, these cuts produce measurable sets in R. Since
each such interval is defined using no more than countably many elements of L, the
intervals are measurable.

By Lemma 4, if P is conglomerable, and as it is countably additive, then one and only
one of these countably many intervals is not null. Denote thatinterval [*o. That s, P(R)

= P(UI*0). Thus Pis a 0-1 distribution on these countably many intervals. Denote by

I*To the interval of tiers above I*o, and by I*io the interval of tiers below [*0. By SA3,

A

each of U I*To and U I*\Lo is measurable. As P is c-additive, P(U I*To) =P(UI*"0)=0.

The linear order of tiers within the interval [*o is again one of the three types,
corresponding to Cases 1, 2, or 3. If I*o produces a linear order thatis a well order,
corresponding to either Case 1 or 2, complete the argument by duplicating Lemma 5
or Lemma 6 (respectively) applied to the interval I*o. If the linear order within I[*¢ is
also an instance of Case 3, then repeat the reasoning to produce a subinterval, [*1

c I*o, where P(R) = P(UI*1).

We continue the argument, assuming that at each stage in the repetition of this

reasoning the interval [* has an internal linear structure corresponding to Case 3.

Define the intervals I*o inductively. At successor ordinals B = a+1, create I*g by
applying the reasoning, above, used to create I*1 from [*o. Atlimit ordinals g <«, let
I*g = NI*, for a <P. To see that these are measurable sets, define the two sequences

of increasing “tail” intervals

<1 0

ocl* 1.

and I*\Lo c I*¢1 C ..

By SAs, for each a < k the sets uI*Ta and ul*‘l'a are measurable, being “Dedekind

T

cuts” in the linear ordering of tiers. As UI*, = R- (UI* ¢ U ul*La ), also UI* is

\

measurable. For each A <x, P is A-additivez. So for each a <, P(uI*Ta) =P(Ul*"g) =

0. Therefore, for each a < k, P(UI*y) = P(R).
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Continue in this fashion until the resulting measurable interval I* satisfies P(I*) <
P(R), which requires a k-long sequence, since P is A-additive; for each A <x. Then
there is a k-long sequence of nested, measurable subintervals [*o> [*1 D [*2> ...

D I*, D ..., with limg <« I* = I* and for each a < x, P(I*,) = P(R), and P(I*) <P(R).

Next, consider the two tail intervals formed by the cutat I*, I*’r and I*i, where I*”L is

entirely below I* and I* is below I>l<T in the linear order of tiers. There are two
subcases to consider.

Subcase1 where |uI*T|: k. Since I*T is entirely above I*J' in the linear
ordering of tiers, by Lemma 4, if P is conglomerable, then P(ul*i') =0. So,in this
subcase, we have that 0 < P(R) — P(I*) = P(UI*T). Use the k-long well ordered
upward-nested sequence {I*Ta: a < K} to create a corresponding k-long well-ordered

sequence of disjoint, measurable (null) sets of tiers, {]*ia: a <k}, that are downward
ordered in the linear ordering of tiers, as follows.

Let ]*io = I*To_ For a successor ordinal, f = a+1, let ]*ig = I*T(Hl - I*Ta. At limit
ordinals ]*J'B = I*TB — Ua < I*Ta. Then, for each a < B <k, the interval of tiers ]*J'(x is
measurable (being a subset of the P-null set I*Ta) and is entirely above the
measurable interval of tiers ]*‘LB. Note that these intervals, {]*J'a: o <k}, partition I*
by measurable sets that are well-ordered downward in the linear ordering of tiers.

Then adapt Lemma 6 to this downward well ordering of intervals to show that P is
not conglomerable.

Subcasez where |uI*T| =A<k Then P(|uI*T|) = 0. This follows since then I"‘T
can be written as the limit of an upward-nested sequence, of length at most A, of P-
null sets. Since P is A-additivez, then P(|uI*T|) =0. So, P(|ul*i’|) = P(R) - P(I*) > 0.
We adapt the reasoning of the previous subcase. Use the k-long well ordered

upward-nested sequence {I*\La: a < K} to create a corresponding k-long well-ordered

sequence of disjoint, measurable (null) sets of tiers, {]*Ta: o <k}, that are upward

ordered in the linear ordering of tiers, as follows.

Let ]*To = I*io_ For a successor ordinal, B = a+1, let ]*TB = I*J/(X,-i-l - I*ia_ At limit

ordinals ]*TB = I*J'g — Uo<p I*\La. Then, for each o < f <, the interval of tiers ]*Ta is
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measurable and entirely below the measurable interval of tiers ]*TB. Note that these

intervals, {]*T(x: o <k}, partition I*i. Then adapt Lemma 5 to this well order of

intervals to show that P is not conglomerable. OLemma 7

The Proposition is immediate from the five Lemmas 3, 4, 5,6, and 7. Qproposition

5. An illustration of Sufficient Condition 1 - Lemma 3.

In this section we illustrate Sufficient Condition 1,and the reasoning used in
Lemma 3. We use this illustration to explain a difference between the de
Finetti/Dubins theory of conditional probability, as used in this paper, and the
theory of regular conditional distributions from the received (Kolmogorovian)
theory of Probability.

Example 3: Let <Q, &, P> be the complete measure space of Lebesgue measurable
subsets of the half---open unit interval of real numbers: Q =[0,1) and #'is its algebra
of Lebesgue measurable subsets. Let P be the uniform, countably additive Lebesgue
probability with constant density function f(®) =1 for eachrealnumber 0 < w <1,

and f(®) = 0 otherwise. So P({w}) = 0 for each ® € Q. Evidently P is not =2"0

additive1, because Q is the union of 2 ‘\O-many null sets.

As an illustration of Sufficient Condition 1 use the uniform density function f to
identify conditional probability given finite sets as uniform over those finite sets, as

well. That is, when F ={my, ..., ok} is a finite subset of Q with k-many points, let P( - |
F) be the perfectly additive probability that is uniform on these k-many points.
These conditional probabilities create a single tier t =, as P({w1} [{®1, ®2}) = 0.5 for
each pair of points in Q.

However, by the countable additivity of P, it follows that each denumerable set of

points is P-null. For example, with U = {®1, ®2, ..., on, ...} (for n < Xy), then P(U) = 0. By
Definition 1, then for each point®w € Q, P({®} | U) = 0 and the conditional probability
P(- | U) is a finitely but not countably additive conditional probability function.

Next, consider the two events E = {®: 0 < ® < 0.9} and its complement with respectto
Q,E¢={®: 0.9 < ® <1}, where P(E) = 0.9. This pair “splits” the sure event Q. Letg be
the 1-1 (continuous) map between E and E¢ defined by g(®w) = 0.9 + ®/9, for ®
€ E. Consider the k-size partition of Q by pair-sets, © = {{w,g(®)}: ® € E}. By
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assumption, P({o} | {o, g(®)}) =1/2 for each pair in ©. Butthen P is not
conglomerable in .

The usual theory of regular conditional distributions treats the example differently.
We continue the example from that point of view. Consider the measure space
<Q, & P>asabove. Letthe random variable X(®)= ®, so that X has the uniform
distribution on Q. In order to consider conditional probability given the pair of
points {o, g(®)}, let

gX)=(X/9)+ 0.9 if0<X<0.9

= 9(X-0.9) if0.9<X<1.

Define the random variable Y(») = X(») + g(X(®)) — 0.9.
Observe that Y has the uniform distribution on the half-open interval [0, 1.0). Also,
note thatY is 2-to-1 between Q and [0.0, 1.0). That is Y = y entails that either ® = 0.9y
oro=0.1(y+9).

Letthe sub-c-sigma field # be generated by the random variable Y. The regular

conditional distribution relative to this sub-c-sigma field, P(Z | #)(®), is a real-valued

function defined on Q thatis #~measurable and satisfies the integral equation
JaP(B| 4)(®) dP(w) =P(A NB)

whenever A € #andB € .

In our case, then P[B |4](®) almost surely satisfies:

PX=09Y|Y)(w)=0.9

and P(X=0.1(Y+9.0) | Y)(w) =0.1.

Thus, relative to the random variable Y, this regular conditional distribution assigns
conditional probabilities as if P({ow} | {®, g(®)}) = 0.9 for almostall pairs {w, g(®)} with
0 < < 0.9. However, just as in the Borel “paradox” (Kolmogorov, 1933), for a
particular pair {®, g(®)}, the evaluation of P({w} | {»,g(®)}) is not determinate and is
defined only relative to which sub-c-sigma field # embeds it.

For an illustration of this last feature of the received theory of regular conditional
distributions, consider a different pair of complementary events with respectto Q. Let
F={w:0<»<0.5}and Fe={w: 0.5 <o <1}. So,P(F)=0.5.
Let fX) =1.0-X if 0<X<1.

=0 if X=0.

Analogous to the construction above, let Z(®) = [X(®) - f(X(®))|. So Z is uniformly
distributed on [0, 1.0) and is 2-to-1 from Q onto [0,1). Consider the sub-c-sigma field

A" generated by the random variable Z. Then the regular conditional distribution
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P(B | #)(®), almost surely satisfies:

PX=05-Z/2|Z#0)(w)=0.5
and PX=05+Z/2|Z#0)(®)=0.5
and for convenience, P(X=0|Z =0)=P(X=0.5|Z=0) =0.5.
However, g(.09) =.91 = f(.09) and g(.91) = .09 =f{(.91). Thatis, Y=0.1 ifand only if Z =
0.82. So in the received theory, it is permissible to have P(@ =.09 | Y =0.1) =
0.9 as evaluated with respect to the sub-c-sigma field generated by Y, and also to have
P(®w =.09 | Z = 0.82}) = 0.5 as evaluated with respect to the sub-c-sigma field generated
by Z, even though the conditioning events are the same event. ¢Example 3

6. Conclusion. Given a probability P that satisfies the six structural assumptions of
the Proposition, we show that non-conglomerability of its coherent conditional
probabilities is linked to the index of non-additivity2 of P. Specifically, assume P is not
k-additive2, and where « is least and is nota weakly inaccessible cardinal. Then there
is a k-size partition © = {h,: o <x} where the coherent conditional probabilities {P(- |

h,)} are not conglomerable. Namely, there exists an event E and a real number ¢ >0
where, for each h, € n, P(E) > P(E | h,) + €.

The structural assumptions that we impose on the c-field Zreflect the constraint
imposed by one partof Ulam’s (1930) seminal finding, which applies when the state-
space Q is uncountable, |QQ| =k« > N1, when Zincludes each pointin Q,and P is o-
additive. If x is not greater than a weakly inaccessible cardinal, then #cannotbe the
powerset of Q2. Because we do not want our findings to depend upon such a large
cardinal assumption, we have to be cautious introducing measurable sets in our study
about conglomerability in k-sized partitions.

Without loss of generality, each countably additive probability can be completed by
adding all subsets of each P-null set. So, we use P-complete countably additive
measure spaces. As we explain, below, the six structural assumptions ensure that &
is sufficiently rich for our study of non-conglomerability in large partitions, while
being attentive to Ulam’s Theorem that # cannotbe as large as the powerset of Q.

Our study takes the equivalence relation of a tier of points as the central concept,
which is defined using conditional probability given finite sets of points: So
singletons from Q are required to be #-measurable (SA1). Also, we require that
tiers are measurable sets (SAz2). Since the tiers are linearly ordered and we consider
sets of tiers above (and below) a given tier in this linear order, we require that
intervals of tiers are measurable (SA3). Taken together, SA1, SA2 and SA3 make the
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linear order of tiers into a &-measurable function of the points in Q. From this
perspective, the last structural assumption, SAe, requires that the cardinality of tiers
also is a #-measurable function.

SA4and SAs are two “splitting” conditions. The former precludes such extreme c-
fields as when #is composed of countable/co-countable subsets of (2, where binary
(measurable) partitions of a non-null setare required to be of unequal cardinality.
The second “splitting” condition SAs insures that when an uncountable set T of tiers
is well ordered under the linear ordering of tiers, then the subset of tiers indexed

with successor ordinals is not P-null if P(UT) > 0, and that this subset of tiers can be
further partitioned into two measurable subsets with the “odd” and “even” indices.

This “splitting” ensures that when the liner order { is a well order, we have
measurable, regressive functions on tiers whose domain includes a non-null set.

The mutual consistency of these structural assumptions is evident for the simple
case where |Q)| =k = N1 adapted to Example 3, as follows.

Example 3a: Consider the P-complete measure space of Lebesgue measure on
Lebesgue measurable subsets of the unitinterval, under the Continuum Hypothesis.

Then, as in Example 3,7 = J, assume a single non-empty tier, Tt = Q. SA1 is satisfied,
since the atoms of Zare the singletons of Q2. SA2, SAs3, SAs, and SA¢ are satisfied,

trivially, because there is only one non-empty tier, Q, which is measurable. SA4is
satisfied since the unit interval contains an uncountable, (measurable) null set, e.g.

the Cantor set. QExample 3a

Next, with Example 4, we demonstrate that the five structural assumptions SA1, SAz,
SAs3, SAs, and SAe¢ are jointly insufficient for the main Proposition.

Example 4: Let <Q, &, P> be the countably additive measure space where:
|QQ] =x = N1, where Q = {og: o < ®1};

#is the smallest o-field containing all singletons, i.e., £ is the o-field of

countably/co-countable subsets of Q;

and P({wq})=0,foreacha < N1.

So,for each E € 3, either P(E) =0 or P(E) =1. For a < X1,letAg = {mp: B <o} with

P(Aq)=0. So{Aq:a < N1}isanupward nested sequence with lim Ay = Q2.
Evidently, P is not NX1-additives.
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As in Example 3, assume there is a single tier. Hence, SA1 is satisfied, since the
atoms of & are the singletons of Q. SA2, SA3, SAs, and SAe are satisfied, trivially,
because there is only one non-empty tier, (2, which is measurable. However, SA4 is

not satisfied, as each measurable binary partition of Q2 produces sets of unequal
cardinality.

Next, we establish that these conditional probabilities associated with the measure
space <Q, &, P> are conglomerable. If & is a countable partition of measurable
events, then P is conglomerable in 7 as P is 5-additive. So, consider an uncountable

partition of measurable events, © = {hg: hg € &, o < X1}. Note that if P fails to be

conglomerable in © with respectto eventE, then P fails to be conglomerable in &
with respectto the complementary event E¢. So, let E € # with P(E) = 1. Then, for all

but a denumerable set of elements of ©, hq < E. Hence, by coherence, P(E | hg) =1

and P satisfies conglomerability in partition «t, contrary to the conclusion of the

Proposition. ¢Example 4

The Proposition permits us to conclude that the anomalous phenomenon of non-
-conglomerability is a result of adopting the de Finetti/Dubins theory of coherent
conditional probability instead of the rival Kolmogorovian theory of regular
conditional distributions. Itis notaresult of the associated debate over whether
probability is allowed to be merely finitely additive rather than satisfying countable
additivity. Restated, our conclusion is that even when P is A-additivez for each A <, if
P is not k-additivez and has coherent conditional probabilities, then P will experience
non-conglomerability in a k-sized partition. The received theory of regular
conditional distributions sidesteps non-conglomerability by allowing conditional
probability to depend upon a sub-sigma field, rather than being defined given an
event.

*Acknowledgments: In writing this paper we are indebted to K.P. Hart for his
numerous constructive comments and, in particular, for pointing out that a previous
version of Lemma 6 was erroneous. Also, we thank Jeremy Avigad, Jessi Cisewski,
Paul Pedersen, Rafael Stern, Wilfried Sieg, and anonymous readers for their helpful
advice.
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